
Access Control

Applied Information Security
Lecture 09

Course So Far

goal: enforce policies:

 “The system shall { prevent, detect } [action] { on, to, with } [asset].”

we have (in theory) seen how to handle actions of illegitimate users:

● cryptography to create a secure channel,
● authentication through that channel.

how do we enforce policies (confidentiality, integrity)
for legitimate users?

Gold Standard
Butler W. Lampson

authenticate principals

● “Who said that?”
● “Who is getting that information?”

authorize access

● “Who can do which operation
 on which object?”

audit decision of guard

● “What happened? Why?”

done

now

done

Today’s Topics

from authentication to authorization:
access control! (AC) models:

● DAC discretionary AC
○ ACL AC lists
○ Capabilities discretionary AC

● MAC mandatory access control
○ MLS multi-level security [Bell-Lapadua, Biba]
○ commerce [Brewer-Nash]

● RBAC role-based AC

● other models ABAC, ReBAC

enforcement: reference monitor

Access Control: Actors

access control policy specifies access rights (permitted operations).
regulate whether requests by principals should be permitted or denied.

principal:

● user a human
● subject process executing on behalf of user
● object resource (e.g. piece of data)

why distinction: processes can be controlled; humans can’t.

basic model: subject (principal) attempts to access (do operation) on object.

authentication: identify the principal who made the request.

authorization: who can do this operation on that object?

guard decides if principal is allowed to do operation on object.

Access Control: Model

Access Control: Model

basic model: subject (principal) attempts to access (do operation) on object.

assumptions:

● principal can learn/update info only using predefined operations.
● operations intercepted by a (reference) monitor
● monitor only allows the operation if the principal has the required privileges.

complete mediation:
must check every

access!

Complete
Mediation
monitor and control
every operation to

every object by
 every principal.

UNIX: process tries to read a file ⇒
kernel decides if process is allowed.

Recap (“Assurance” lecture)

OS reference monitor
does this.

This is a form of AC!

Access Control: Policy, Mechanism

AC policy: principal permitted to perform operation on object?
confidentiality: restrict operations that reveal information.
integrity: restrict operations that perform updates.

The primary concerns of an access control mechanism:

● prevent access: ensure that subject cannot access object w/o privilege

● determine access: decide if subject has access (as per policy), to op on object.

● grant access: give a subject access to an object.
● revoke access: remove a subject's access to an object.

● audit access: determine which subjects can access object,
or which objects a subject can access.

failsafe
default

separation of privilege:
don't grant access to
many objects just to

enable access to one.

must be
tamper-proof

Access Control: Implementation Concerns

● flexibility
○ how expressive is the means of expressing policies?

● understandability
○ how complex are access control policies

(depends on the flexibility)

● run-time cost
○ depends on the granularity

Access Control: Kinds

broadly, two kinds of AC (“who controls the policy?”).

● discretionary access is the discretion of the data owner
● mandatory an authority mandates the control

other AC is "just" a particular way to realize DAC/MAC, and often mix DAC/MAC

● RBAC, ABAC, ...

focus
today

DAC
discretionary access control

Discretionary Access Control

access is the discretion of the data owner

● object owner controls initial assignment of
privileges on object

● object owners have the possibility of
updating privileges

example: commercial OSs

● principal: user
● object: file, I/O device, ...

DAC

$ ls -l file

Policies: Access Matrix

● DAC policies can be depicted using the following table (access matrix):

object

principal c1.tex c2.tex invtry.xls

fbs r,w r,w r

mmb r,w

jhk r
The example tables, hereafter, are from Chapter 7 of Fred B Schneider’s book

Butler
Lampson
anecdote

DAC

Policies: Access Matrix

● DAC policies can be depicted using the following table (access matrix):

object

principal c1.tex c2.tex invtry.xls

fbs r,w r,w r

mmb r,w

jhk r
The example tables, hereafter, are from Chapter 7 of Fred B Schneider’s book

read
operation

write
operation

DAC

Access Matrix as a Relation

● set Auth contains triples of the form ⟨P, O, op⟩ where
○ P principal
○ O object
○ op operation

read ⟨P, O, op⟩ ∈ Auth as “P authorized to op on O”

● Auth = { ⟨fbs,c1.tex,r⟩, ⟨fbs,c1.tex,w⟩, ⟨fbs,c2.tex,r⟩, ⟨fbs,c2.tex, w⟩,
 ⟨fbs,invtryxls.tex,r⟩, ⟨mmb,invtryxls.tex,r⟩,
 ⟨mmb,invtryxls.tex,w⟩, ⟨jhk,invtryxls.tex,r⟩ }

DAC

Commands

● commands define which changes to Auth are permitted.

● example: U can authorize U’ to op on O iff U owns O.

addPriv(U, U’, O, op):
 pre: invoker(U) ∧ ⟨U, O, owner⟩ ∈ Auth ∧ op ≠ owner
 action: Auth := Auth ∪ {⟨U’, O, op⟩}

pre does not hold ⇒ action fails.

DAC

Protection
Domain

a set of principals

ops that P needs depends on task
to be performed.

P doesn’t need all its privileges all
the time; violates least privilege.

solution: protection domain.

threads -- transition between →
protection domains -- consist of →
principals

example transitions: invoke a
program, change from usermode to
supervisor mode, ...

DAC

object

domain (principal) c1.text c2.tex invtry.xls

fbs⊳sh

fbs⊳gedit r,w r,w

fbs⊳excel r

mmb⊳sh

mmb⊳gedit

mmb⊳excel r,w

Access Matrix w/ Protection Domains

● Access matrix with protection domains

DAC - Protection Domain

sh running
on behalf of

fbs

Protection Domains, Transitions

OS supports protection-domains => certain sys-calls cause transition.

transitions ought to only be authorized between certain pairs of protection
domains.

ex: sh ---> excel, sh ---> edit
excel -/-> sh

can specify with 'enter' privilege, per protection domain. ⟨D, D’, enter⟩
(i.e. which domain can be entered from this domain)

DAC - Protection Domain

object

domain (principal) c1.text c2.tex invtry.xls fbs⊳sh fbs⊳gedit fbs⊳excel ...

fbs⊳sh e e ...

fbs⊳gedit r,w r,w ...

fbs⊳excel r ...

mmb⊳sh ...

mmb⊳gedit ...

mmb⊳excel r,w ...

Protection Domain, Transitions

● Domains are principals as well as objects, the privilege e allows transition

DAC - Protection Domain

Confused Deputy
Attack

transitions can
 reduce (i.e. attenuate)
 increase (i.e. amplify)
privileges.

both needed for least privilege:
 attenuation: restricted delegate

P only grants P’ privileges P’ needs to do task.

 amplification: data abstraction
users deliberately kept ignorant of how O is
implemented.

confused deputy attack: P deputy
of A, doing things for A that
P is privileged to do but A is not.

send that
file over the
network...

DAC

Wormhole
vulnerability

in an Android
lib (Baidu, …)

Example

● Client may issue a request to abuse the privileges of a server

Server: remoteExec(File f, Operation op)
 1: buffer := System.read(f)
 2: results := System.exec(buffer, op)
 3: charges := calculateBill(results)
 4: System.write(f, results)
 5: System.write(charges.txt, charges)

DAC - Confused Deputy Attack

Confused Deputy

● Client may issue a request to abuse the privileges of a server

Server: remoteExec(File f, Operation op)
 1: buffer := System.read(f)
 2: results := System.exec(buffer, op)
 3: charges := calculateBill(results)
 4: System.write(f, results)
 5: System.write(charges.txt, charges)

If f = charges.txt the client may modified a file she
wasn’t supposed to. For instance, if Server holds the

privilege to write on charges.txt but the client doesn’t.

DAC - Confused Deputy Attack

Example, Solution?

● Check if client has permission, per statement.

Server: remoteExec(File f, Operation op)
 1: buffer := System.read(f)
 2: results := System.exec(buffer, op)
 3: charges := calculateBill(results)
 4: System.write(f, results)
 5: System.write(charges.txt, charges)

● only instruction 5 can modify charges.txt.
● impractical; would need to be indicated in

each statement in code.

DAC - Confused Deputy Attack

Example, Solution

● Bundle client permissions together with object name

Server: remoteExec(File f, Operation op, Privs privs)
 1: buffer := System.read(f)
 2: results := System.exec(buffer, op, privs)
 3: charges := calculateBill(results)
 4: System.write(f, results)
 5: System.write(charges.txt, charges)

Bundle together the client permissions needed
to perform the operation. The server can then

check that the client doesn’t have writing
privileges in charges.txt.

DAC - Confused Deputy Attack

Bundle together the client permissions needed
to perform the operation. The server can then

check that the client doesn’t have writing
privileges in charges.txt.

Implementing
DAC

necessary:

● represent Auth somehow
● check ⟨P, O, op⟩ ∈ Auth

(i.e. P authorized to op on O?)
● change Auth w/ commands defined by

DAC policy
● associate protection domain w/ each

thread of control
● have threads transition between

protection domains

useful:

● given P, list all ⟨O, op⟩ s.t. ⟨P, O, op⟩∈Auth
● given O, list all ⟨P, op⟩ s.t. ⟨P, O, op⟩∈Auth

DAC

Naive approach

store access matrix in memory

huge, mostly empty, table.

DAC - Implementing DAC

object

domain
(principal) c1.text c2.tex invtry.xls fbs⊳sh fbs⊳gedit fbs⊳excel ...

fbs⊳sh e e ...

fbs⊳gedit r,w r,w ...

fbs⊳excel r ...

mmb⊳sh ...

mmb⊳gedit ...

mmb⊳excel r,w ...

Better Approaches

Access Control Lists
non-empty cells associated with the
column (object).
stored w/
the object

Capabilities
Non-empty cells associated with the

 row (principal).
 stored w/ the
 principal

DAC - Implementing DAC

object

domain
(principal) c1.text c2.tex invtry.xls fbs⊳sh fbs⊳gedit fbs⊳excel ...

fbs⊳sh e e ...

fbs⊳gedit r,w r,w ...

fbs⊳excel r ...

mmb⊳sh ...

mmb⊳gedit ...

mmb⊳excel r,w ...

ACL

DAC

access control list

Access Control Lists (Acls)

● the ACL of an O is a list

⟨P₁,Privs₁⟩, ⟨P₂,Privs₂⟩, ...

● an ACL entry ⟨Pi, Privsi⟩ is in the list for an object O iff

∀ op ∈ Privsi . ⟨pi , O, op⟩ ∈ Auth

● example

⟨fbs, {r}⟩, ⟨mmb, {r,w}⟩, ⟨jhk, {r}⟩

DAC - ACL

Implementing
ACL

long lists are unwieldy. Simplify:

groups of principals: access is
granted by virtue of being in group.

● P gets access to course notes by virtue
of being an enrolled student.

● P gets access to the ITU HPC by virtue
of being faculty.

encoding groups in ACL, problems:

● add/rem. U requires upd. many ACLs.
● rem. P from G by rem. P from ACL of O:

but P could access O by other means...

solution: group declaration ⟨G,Privs⟩
represents set of principals

DAC - ACL

Negative Policies?

to conclude that P cannot op on O, must check all P granted op by the ACL of O.
time-consuming (especially when groups are present).

solution (?): prohibitions (e.g. negative policies, !op).

● ⟨P,{!op}⟩ in ACL of O means P cannot op on O
● warning: conflicting policies; what if P can both op and !op on O?

(take first privilege found in ACL?)

anecdote (a real issue): Facebook is working on reducing the ACL checking time.

DAC - ACL - Implementing ACL

Where to keep the ACL?

ACL must be stored s.t. its integrity is protected.

solutions:

● store the ACL w/ O, so updates to the ACL are checked by M.
● store the ACL w/ M, so integrity-protection of M protects integrity of ACL.

OS abstractions are a good place to store the ACL.

● files: big enough to house ACL.
● locks/ports: few; easy to keep in OS memory.
● M is part of the OS.

DAC - ACL - Implementing ACL

monitor

Capabilities

DAC

capability-based security

Capabilities

a capability is a pair ⟨O,Privs⟩.
a principal can hold a capability (is granted Privs on O).

Auth is enforced, provided the following holds throughout execution:

1. for P to op on O, P must hold ⟨O,Privs⟩ with op ∈ Privs.
capability-based addressing W: possession of capability

2. ⟨O,Privs⟩s cannot be counterfeited or corrupted.
capability authenticity W: integrity of capability

DAC - Capabilities

Possession of
Capability

W: “possession of capability”

⟨O,Privs⟩s are the sole means by
which P identify & access O.

solves confused deputy.

privilege bundled w/ file name

DAC - Capabilities

Capability
Authenticity

W: “integrity of capability”

prevent unauthorized creation /
changes of ⟨O,Privs⟩s.

implementation approaches:

● tagged memory (HW)
● protected address space (HW)
● cryptographically-protected
● type-safety-protected

DAC - Capabilities

Implementing
Capabilities

P can

1. create new O, and in so doing,
receive ⟨O,Privs⟩

2. transfer to P' one or more capability P
holds (w/ attenuation/amplification)

3. revoke capabilities that derive from
⟨O,Privs⟩.

all capabilities are derived from the
capability received initially by
creator (i.e. owner) of O.

privileges controlled by owner (or
principals whose authority can be
traced to the owner). Thus DAC.

DAC - Capabilities

ACL vs. Capabilities

ACL
● implemented as reference-monitor + list.

○ localized
● attractive; separation-of-concerns.
● but: high cost in managing the many

small protection domains.
● must be defined explicitly for instantiating

Least Privilege.

Capabilities
● this complexity is eliminated; protection

domains are not enforced explicitly.
● but, w/ capabilities: to discover what

accesses are, or could become, possible
as execution proceeds, large set of
components must be analyzed.

● but, this decentralization is exactly what
makes capabilities appealing for
controlling access to user-defined objects.

Capabilities combine naming+authorization.
kills the confused deputy attack.

DAC

ACL vs. Capabilities

ACL
● implemented as reference-monitor + list.

○ localized
● attractive; separation-of-concerns.
● but: high cost in managing the many

small protection domains.
● must be defined explicitly for instantiating

Least Privilege.

Capabilities
● this complexity is eliminated; protection

domains are not enforced explicitly.
● but, w/ capabilities: to discover what

accesses are, or could become, possible
as execution proceeds, large set of
components must be analyzed.

● but, this decentralization is exactly what
makes capabilities appealing for
controlling access to user-defined objects.

Capabilities combine naming+authorization.
kills the confused deputy attack.

DAC

UNIX

DAC

case study

Case Study: UNIX

● authorize requests that processes make to perform operations on files
○ file descriptors are used for: files, devices, sockets, …

● principals
○ users
○ groups of users

● objects
○ files (“everything is a file”)

● each file has
○ an ACL associated to it,
○ a user id (the owner), and
○ a group id (file’s group)

DAC - UNIX

Case Study: UNIX

● sacrifices expressiveness in favor of succinctness
○ each file defines a set of privileges for its owner, group and other users

PrivsF.owner = {r,w} PrivsF.group = {r} PrivsF.others = Ø

DAC - UNIX

UNIX Privileges Interpretation
DAC - UNIX

UNIX: Authorization Check

● process w/ user id, euid, and group id, egid, is
authorized to perform an operation requiring a privilege p iff

 (p ∈ PrivsF.owner ∧ euid = ownerF) need to be owner, am owner

∨ (p ∈ PrivsF.group ∧ euid ≠ ownerF ∧ egid = ownerF)
∨ (p ∈ PrivsF.others ∧ euid ≠ ownerF ∧ egid ≠ ownerF)

DAC - UNIX

UNIX: Domain Transitions

● suid
○ when a file F having suid executes, it causes a change of user id to ownerF
○ used by system services
○ root uid required for manipulating restricted parts of the OS

-rwsr-xr-x 1 root root 40760 Sep 26 2013 /bin/ping
-rwsr-xr-x 1 root root 77336 Apr 28 2014 /bin/mount
-rwsr-xr-x 1 root root 30768 Feb 22 2012 /usr/bin/passwd
---s--x--x 1 root root 123832 Nov 22 2013 /usr/bin/sudo etc.

● sgid
○ When a file F having sgid executes, it causes a change of the group id to groupF

DAC - UNIX

https://devconnected.com/access-control-lists-on-linux-explained/

DAC - UNIX

DAC - UNIX

ACL in Linux

Trojan Horse
Attack

● DAC vulnerable Trojan horse attacks.
● consider the following scenario

1. user runs a program with access to
confidential information

2. the program creates or chooses a file
with reading permission for the attacker

3. the program reads confidential
information

4. the program writes the confidential
information in the file that it is readable
for the attacker

● (think Android; need file sys for notes, internet
for ads ⇒ can dump file sys on the Web)

crux of the problem: once P has access, P can
do anything he/she wants with that access.

● stronger AC models prevent this.

DAC

Summary

policies: “The system shall { prevent, detect } [action] { on, to, with } [asset].”

enforce: authenticate, authorize, audit (gold standard)

● secure communication over untrusted medium
● authenticate users
● authorize access to information
● audit decision of guard

open ends:

● what about that Trojan horse? (untrustworthy SW)

DAC

MAC
mandatory access control

1. MULTI-LEVEL SECURITY

Sensitivity

• Concern is confidentiality of information
• Documents classified according to sensitivity: risk

associated with release of information
• In US:
– Top Secret
– Secret
– Confidential
– Unclassified

Compartments

• Documents classified according to compartment(s):
categories of information (in fact, aka category)
– cryptography
– nuclear
– biological
– reconnaissance

• Need to Know Principle: access should be granted only
when necessary to perform assigned duties (instance of
Least Privilege)
– {crypto,nuclear}: must need to know about both to access
– {}: no particular compartments

Labels

• Label: pair of sensitivity level and set of compartments,
e.g.,
– (Top Secret, {crypto, nuclear})
– (Unclassified, {})

• Users are labeled according to their clearance
• Document is labeled aka classified

– Perhaps each paragraph labeled
– Label of document is most restrictive label for any paragraph

• Labels are imposed by organization
• Notation: let L(X) be the label of entity X

Restrictiveness of labels

Notation: L1 ⊑ L2
• means L1 is no more restrictive than L2
– less precisely: L1 is less restrictive than L2
– another reading: information may flow from L1 to L2
– also: L1 is dominated by L2

• e.g.
– (Unclassified,{}) ⊑ (Top Secret, {})
– (Top Secret, {crypto}) ⊑ (Top Secret, {crypto,nuclear})

Restrictiveness of labels

• Definition:
– Let L1 = (S1, C1) and L2 = (S2, C2)

– L1 ⊑ L2 iff S1 ≤ S2 and C1 ⊆ C2
– Where ≤ is order on sensitivity:

Unclassified ≤ Confidential ≤ Secret ≤ Top Secret

• Partial order:
– Some labels are incomparable
– e.g. (Secret, {crypto}) vs. (Top Secret, {nuclear})

Label partial order

Conf, {}

Conf, {nuc} Conf, {crypto}

Conf, {nuc,crypto}

Label partial order

Conf, {}

Secret, {}

Sec, {nuc,crypto}

Secret, {nuc} Secret, {crypto}

Label partial order

Conf, {}

Secret, {}

Sec, {nuc,crypto}

Secret, {nuc} Secret, {crypto}Conf, {nuc,crypto}

Conf, {nuc} Conf, {crypto}

Label partial order

Conf, {}

Secret, {}

Conf, {nuc,crypto}

Sec, {nuc,crypto}

Conf, {nuc} Conf, {crypto}

Secret, {nuc} Secret, {crypto}

Incomparable

Label partial order

Conf, {}

Secret, {}

Conf, {nuc,crypto}

Sec, {nuc,crypto}

Conf, {nuc} Conf, {crypto}

Secret, {nuc} Secret, {crypto}

Incomparable

Access control with MLS

• When may a subject read an object?
– Threat: subject attempts to read information for which it

is not cleared
– e.g., subject with clearance Unclassified attempts to read

Top Secret information

• When may a subject write an object?
– Threat: subject attempts to launder information by

writing into a lower-security object
– e.g., subject with clearance Top Secret reads Top Secret

information then writes it into an Unclassified file

Access control with MLS

Threat of concern is subject not user:
• Users trustworthy by virtue of vetting process for

security clearance
• Out of scope (e.g.): user who views Top Secret

information and calls the Washington Post
• But still want to enforce Least Privilege
• And malicious programs are a threat...

Trojan Horse

Access control with MLS

• When may a subject read an object?
– S may read O iff L(O) ⊑ L(S)
– object's classification must be below (or equal to)

subject's clearance
– "no read up"

• When may a subject write an object?
– S may write O iff L(S) ⊑ L(O)
– object's classification must be above (or equal to)

subject's clearance
– "no write down"

• Beautiful symmetry between these

Reading with MLS

• Scenario:
– Colonel with clearance (Secret, {nuclear, Europe})
– DocA with classification (Confidential, {nuclear})
– DocB with classification (Secret, {Europe, US})
– DocC with classification (Top Secret, {nuclear, Europe})

• Which documents may Colonel read?
– Recall: S may read O iff L(O) ⊑ L(S)
– DocA: (Confidential, {nuclear}) ⊑ (Secret, {nuclear, Europe})
– DocB: (Secret, {Europe, US}) ⋢ (Secret, {nuclear, Europe})
– DocC: (Top Secret, {nuclear, Europe}) ⋢ (Secret, {nuclear,

Europe})

Writing with MLS

• Scenario:
– Colonel with clearance (Secret, {nuclear, Europe})
– DocA with classification (Confidential, {nuclear})
– DocB with classification (Secret, {Europe, US})
– DocC with classification (Top Secret, {nuclear, Europe})

• Which documents may Colonel write?
– Recall: S may write O iff L(S) ⊑ L(O)
– DocA: (Secret, {nuclear, Europe}) ⋢ (Confidential, {nuclear})
– DocB: (Secret, {nuclear, Europe}) ⋢ (Secret, {Europe, US})
– DocC: (Secret, {nuclear, Europe}) ⊑ (Top Secret, {nuclear,

Europe})

Reading and writing with MLS

• Scenario:
– Colonel with clearance (Secret, {nuclear, Europe})
– DocA with classification (Confidential, {nuclear})
– DocB with classification (Secret, {Europe, US})

– DocC with classification (Top Secret, {nuclear, Europe})

• Summary:
– DocA: Colonel may read but not write
– DocB: Colonel may neither read nor write
– DocC: Colonel may write but not read

Perplexities of writing with MLS
1. Blind write: subject may not read higher-security object yet may write

it
– Useful for logging
– Some implementations prohibit writing up as well as writing down

2. User who wants to write lower-security object may not
– Attenuation of privilege: login at a lower security level than clearance
– Motivated by Trojan Horse
– Nice (annoying?) application of Least Privilege

3. Declassification violates "no write down"
– Encryption or billing procedure produces (e.g.) Unclassified output from

Secret information
– Traditional solution is trusted subjects who are not constrained by access

control rules

Prevention of laundering
• Earlier concern: "subject with clearance Top Secret reads Top Secret

information then writes it into an Unclassified file"
• More generally:

– S reads O1 then writes O2
– where L(O2) ⊏ L(O1)
– and regardless of L(S)

• Prohibited by MLS rules:
– S read O1, so L(O1) ⊑ L(S)
– S wrote O2, so L(S) ⊑ L(O2)
– So L(O1) ⊑ L(S) ⊑ L(O2)
– Hence L(O1) ⊑ L(O2)
– But combined with L(O2) ⊏ L(O1), we have L(O1) ⊏ L(O1)
– Contradiction!

• So access control rules would defeat laundering, Trojan Horse, etc.

BLP

[Bell and LaPadula 1973]
• Formal mathematical model of MLS plus access control

matrix
• Proof that information cannot leak to subjects not cleared

for it
• "No read up": simple security property
• "No write down": *-property
• "The influence of [BLP] permeates all policy modeling in

computer security" –Matt Bishop
– Influenced Orange Book
– Led to research field "foundations of computer security”

BLP, for integrity

• BLP is about confidentiality
• Adapted to integrity by Biba [1977]: same rules, different

lattice
– Instead of Unclassified and Secret, labels could be Untrusted

and Trusted
• Recall L1 ⊑ L2 means “L1 may flow to L2”

– BLP: low secrecy sources may flow to high secrecy sinks
• Hence Unclassified ⊑ Secret, but not v.v.

– Biba: low integrity sources may not flow to high integrity
sinks
• Hence Trusted ⊑ Untrusted, but not v.v.

– High vs. low is “flipped” (lattices are duals)

Biba model

• S may read O iff L(O) ⊑ L(S)
– E.g., Trusted subject cannot read Untrusted object
– But Untrusted subject may read Trusted object

• S may write O iff L(S) ⊑ L(O)
– E.g., Trusted subject may write Untrusted object
– But Untrusted subject may not write Trusted object

MLS/BLP in OSs

• SELinux [open source release by NSA 2000]
• TrustedBSD [2000], influences iOS and OS X

2. BREWER-NASH

Conflict of interest

Setting: consulting firm
• e.g., stock exchange, investment bank, law firm
• Consultant represents two clients
– Best interest of those clients conflict
– Consultant could help one at expense of the other
– Consultant has a conflict of interest (COI)

• Norms (laws, regulations, ethics) prohibit consultant
from exploiting COI

• After some time (days, years, never), COI might
expire

Conflict of interest

• Typical paper implementation:
– Consultant maintains public CV

• Entry in CV for each client
• Entry has been sanitized and approved by client, e.g., "Sep 2015-Apr

2016: consulted on security requirements for a new branch accounting
system for a major US retail bank"

– Manager checks CV before assigning consultant to new client
– Client receives CV to double-check from their perspective

• Brewer and Nash [1989] invented a MAC policy for this
setting
– Often known as Chinese Wall (CW)
– Other names: ethics wall, screen

Great Wall of China

Brewer-Nash model

• Object: contains sensitive information about
companies
– a file about Bank of America's trade secrets
– but not its addresses, phone numbers, etc.

• Company dataset (CD): all the objects related to a
single company
– all the files about Bank of America

• Conflict of interest class (COI): all the company
datasets for which the companies compete
– all the files about banks

Brewer-Nash model

Bank of America

file	
1

file	
2

file	
3

Brewer-Nash model

Bank of
America

Citibank

Exxon
Mobil

BP

CD
COI

Breaches

Prevent two kinds of breaches of the wall:
• One consultant works on more than one CD

inside a COI
• Two consultants each work on their own CD

inside COI but cooperate to write that
information to a shared object

Access control with Brewer-Nash

• When may a subject read an object?
– S may read O iff

S has never read any O' such that
COI(O) = COI(O') and CD(O) != CD(O')

– Subject may not read from two CDs inside same COI
– Requires tracking history of objects read by subject

• When may a subject write an object?
– S may write O iff

S has never read any O' such that
CD(O) != CD(O')

– Subject may not write to any other CD after reading from
one

Reading with Brewer-Nash

• S may read O iff
S has never read any O' such that

COI(O) = COI(O') and CD(O) != CD(O')
• If S has never read anything, S has free choice of what to

read next
• Once S does read object from CD1 in COI1, a wall is

erected around S
– Cannot read other CDs from same COI
– But can read from different COI

• If S does read from CD2 in COI2, wall changes shape
– CD1 and CD2 inside wall
– All other CDs from COI1 and COI2 outside the wall

Writing with Brewer-Nash

• S may write O iff
S has never read any O' such that

CD(O) != CD(O')
• If S has never read anything, S has free choice of what to

write
• If S has read from CD1, S may write only to CD1
• If S has read from CD1 and CD2, S may not write at all

– e.g. read from Bank of America and Exxon Mobil:
• Now cannot write anywhere
• Writing to Bank of America could leak info about Exxon Mobil and vv.

• Seems overly prohibitive...

Users with Brewer-Nash

• A subject who has read two CDs may not write
• But that need not be true of a user
• Track read objects for:

– user over its lifetime
– subject over its lifetime (which is shorter than user)
– distinguish what user has learned vs. what subject has learned

• As with MLS, user can choose to login at lower security level
– Attenuation of privilege: give up the subject's right to read from

CDs that have previously been read by user
– Subject assigned that security level
– So user could have multiple subjects with different security levels

Users with Brewer-Nash
Example: Jane has read CD1 from COI1 and nothing from COI2
• Jane could login

– with right to read CD1
– or without that right

• Then subject on behalf of Jane reads CD2 from COI2: that is recorded
for Jane as well and influences future subjects of hers

• Can Jane's subject write?
– With right to read CD1: no
– Without right: yes

• Jane's subject always prohibited from reading CD1' from COI1,
regardless of whether right to read CD1 is enabled

So if user wants to work with different CDs, they can! Just disable access to
the rest.

RBAC
role-based access control

Role-based Access Control

● enterprises and institutions are typically organised in roles

● different roles are granted different privileges

● roles:
○ student in a study program
○ teacher in a study program
○ teacher in another university
○ external examiner

● roles are more stable than users in a company
○ So they are a better candidate for authorization

RBAC

“DAC for institutions”

Why RBAC?

● goals of individuals may not be aligned
to those of an institution
(e.g., company, university, governmental, ...)

RBAC solution:

● set institutional rules that cannot be modified.

RBAC

RBAC

role

RBAC

Roles

● each user in the system is assigned a set of roles
○ UserRoles(C) = {teacher, examiner }

● each role is assigned a set of privileges
○ RolePrivs(teacher) = “read and write lecture notes”
○ RolePrivs(student) = “read lecture notes”

● users can have multiple roles active at a time;
hence having all the privileges in each individual role

○ ActiveRole(C) = {student, TA}
○ RolePrivs(ActiveRole(C)) = ⋃R∈ActiveRole(C) RolePrivs(R)

RBAC

Roles Hierarchy

● roles form a hierarchy
○ The hierarchy is a partial order

● all privileges of the parents are transferred to the children

RolePrivs(Teacher) = RolePrivs(TeachingTeamMember) ∪ {...}
(teacher specific privileges)

TeachingTeamMember

Teacher TA

RBAC

● constraints may be added to role assignment
in order to guarantee certain desired properties

● example
○ mutually exclusive roles (e.g., studentAIS and teacherAIS)

C1: studentAIS ∉ UserRoles(U) ∨ teacherAIS ∉ UserRoles(U)

● doable at any level of granularity (depends on the reference monitor)
○ limit active roles
○ constraints on the roles hierarchy
○ time (e.g., role R is disallowed from 8am to 10pm)
○ location (e.g., role R is only allowed when being at ITU)
○ ...

Role Constraints
RBAC

Roles Vs Groups

● role & group
○ set of users, that are assigned privileges

● differences?
○ roles may be active or inactive
○ roles form a hierarchy

● privileges handled resource-owner OR organization.
role assignment handled by organization.

○ so, not DAC, but more...

RBAC

other
access control models

Relationship-
Based AC

● online social networks
● people define audience of

items based on social
connections

○ my friends can access my posts

● DAC or MAC?

ReBAC

Relationship-
Based AC

● online social networks
● people define audience of

items based on social
connections

○ my friends can access my posts

●

ReBAC

● ReBAC not sufficient; we would need an role
for each relationship
(friends or Alice, friends of Bob)

○ relationships keep growing;
requires a dynamic set of roles

Attribute-
Based AC

● each object has a set of
attributes associated to it

○ defined by the organization
○ age, gender, role, creation time, ...

● access control policies depend
on those attributes

○ defined by the organization or
owner of resources

● directly compatible with
attribute-based encryption
(ABE): user’s secret key depends on

 his/her attributes

● DAC or MAC?

ReBAC

Attribute-
Based AC

● each object has a set of
attributes associated to it

○ defined by the organization
○ age, gender, role, creation time, ...

● access control policies depend
on those attributes

○ defined by the organization or
owner of resources

● directly compatible with
attribute-based encryption
(ABE): user’s secret key depends on

 his/her attributes

●

ReBAC

● ReBAC not sufficient; we would need
a role for each attribute condition in a policy

○ also dynamic, which implies a
dynamic set of roles

Expressiveness of AC models (ReBAC, ABAC)

Source: https://www.profsandhu.com/cs5323_s17/L6.pdf

Source: https://profsandhu.com/confrnc/misconf/codaspy17-tahmina.pdf

DAC

Reference Monitor

Security Policy

security a system is secure iff it

● does what it should,
● and nothing more.

policy stipulates what should and
should not be done.

format “The system shall
 { prevent, detect } [action]
 { on, to, with } [asset].”

how turn ⟨ action, asset, harm ⟩
into above format.

Reference Monitor - Recap (“Assurance”)

enforcing AC policies:
complete mediation mechanism
+ AC matrix. let’s see mechanism.

Reference Monitor

reference monitor: piece of SW that checks each reference
made by subjects to objects.

(note: not the only way to get complete mediation. e.g. program analysis)

TCB: all SW/HW components that must function correctly
for the system to implement its security policy.

TCB compromised ⇒ system compromised. keep the TCB small.
Reference monitor in TCB. a good monitor is small.

OS kernels can be small (microkernel). In practise, large (thus large TCB).

Reference Monitor

trusted
computing

base

Interpreter

program interpreted by monitor.

each instruction only executed if
monitor OKs it (conforms to policy)

● broad
e.g. do not execute two MOVs in a row,
do not write to that section of disk, …

● slow
1 program instruction ⇒
12 monitor instructions?

approach 1:

program binary

interpreter

operation

output

Reference Monitor

Wrapper

intercepts (& interprets / redirects)
only some program instructions.

● potentially faster
monitor overhead only for caught
instructions.

● wrapper can only restrict ops
that it sees.
cannot enforce all policies.

approach 2:

Reference Monitor

Hardware

recall:

● each process has its memory.
● exists state not associated w/

any process (e.g. I/O registers).

instructions manipulating that state
distinct from other instructions.

● user mode process state

● supervisor mode any state

restrict processes to only execute
certain instruction sequences in
supervisor mode.

⇒ OS is a wrapper!

approach 3:

Reference Monitor

Enforceable Security Policies

∀s ∈ S . p(s)

monitor can only accept/reject current trace; knows nothing about other possible
traces (safety properties).

x := false; if (secret) { x := true }; out public x

‘secret == false’ ⇒ monitor does not reject the output at the end.

monitors are not the be-all end-all of enforcements! They are limited!

(fortunately, we also have other approaches; stay tuned)

Reference Monitor

state property

Secure by Transformation

SW fault isolation
program, transformed to satisfy policy.
examples follow (not just monitors):

inlined reference monitor
program, transformed to include a monitor.
old program misbehaves ⇒ new program self-destructs.

secure multi-execution
replicate program, one run per principal.

Reference Monitor

summary

from authentication to authorization:
access control! (AC) models:

● DAC discretionary AC
○ ACL AC lists
○ Capabilities discretionary AC

● MAC mandatory access control
○ MLS multi-level security [Bell-Lapadua, Biba]
○ commerce [Brewer-Nash]

● RBAC role-based AC

● other models ABAC, ReBAC

enforcement: reference monitor

Summary
summary

Ambient
Authority

Summary

in your OS,

● a process does not (need not, cannot)
name an authority that justifies ops
on the world around it.

this ambient authority is implied, and trusted.

on the Internet (API, services talk to services),
we have no such authority.

● Facebook: “Hi Twitter. So, you want to post on
Bob’s wall? By who’s authority?”

solution: capabilities. include the authority in
the request, so system can check & authorize.

how: bearer tokens.

OS kernel

