
Cryptography: Integrity

Applied Information Security
Lecture 8

Last Lecture

you don’t control the wire. (Dolev-Yao adversary).

● tamper, delete, delay: MitM! active

need to

● detect tampering of messages
message == expected message

● detect spoofing
sender == expected sender

with that, we can exchange keys… to create secure channels

cryptography for authentication!

● hashing SHA secure hash algorithms

● authentication
○ Message MAC message authentication code
○ User RSA one-time pad

● cryptosystems
○ in motion TLS transport layer security
○ at rest PGP pretty good privacy
○ off-the-record OTR off the record

● password storage

Today’s Topics

Hashing
MD5, SHA-1, SHA-2, SHA-3

Hash Functions

● Input: Arbitrary size string

● Output: fixed-size string
○ Obs: collisions may occur (see John Smith

and Sandra Dee on the right)
○ Collisions expected; we are mapping from

infinite to finite domains.

● Properties:
○ Easy to compute h(m) given that we know m
○ For two identical inputs always produce the

same output; s = s’ ⇒ h(s) = h(s’)
https://en.wikipedia.org/wiki/Hash_function

Additional stronger properties required:

● Infeasible to find a message given a hash value
○ One way function (remember colours video in Lec 7)
○ Infeasible to find m given that we know h(m)

● Infeasible to find two different messages with
the same hash (collision resistance)

○ Infeasible to find h(m) = h(m’) where m ≠ m’

● Small modification on messages trigger
significant changes

○ Avalanche effect
○ Similar m and m’ implies very different h(m) and h(m’)

(Ideal) Cryptographic Hash Functions

https://en.wikipedia.org/wiki/Cryptographic_hash_function

The output of cryptographic
hash functions is typically
called digest

Additional stronger properties required:

● Infeasible to find a message given a hash value
○ One way function (remember colours video in Lec 7)
○ Infeasible to find m given that we know h(m)

● Infeasible to find two different messages with
the same hash (collision resistance)

○ Infeasible to find h(m) = h(m’) where m ≠ m’

● Small modification on messages trigger
significant changes

○ Avalanche effect
○ Similar m and m’ implies very different h(m) and h(m’)

(Ideal) Cryptographic Hash Functions

https://en.wikipedia.org/wiki/Cryptographic_hash_function

The output of cryptographic
hash functions is typically
called digest

Can we ensure this
property in general?
[Mentimeter]

Is this property needed?

https://www.menti.com/achs6b6gto

Real Cryptographic Hash Functions

● MD5 Ron Rivest (1991)
○ 128 bits output
○ Collision resistance broken
○ Can find collisions in seconds

● SHA-1 NSA (1995)
○ 160 bits output
○ Deprecated; broken for pdf files (http://shattered.io/)

● SHA-2 NSA (2001)
○ Family of functions with output sizes: 225, 256, 385, 513 bits
○ Not broken yet, believed to be vulnerable to same attacks than SHA-1

● SHA-3 NIST competition (2015)
○ Same output sizes as SHA-2
○ Strongest security properties

SHA-0 released and shortly after
replaced by SHA-1 due to an
undisclosed “significant flaw”

authentication
MAC, RSA

messages

Authenticating Messages (Problem)

I love you

Authenticating Messages (Problem)

I love you

I love you

Authenticating Messages (Problem)

I love you

I love you I hate you

Authenticating Messages (Problem)

I love you

I love you I hate you

I hate you

Authenticating Messages (Problem)

I love you

I love you I hate you

I hate you

How can Bob know that the
message was sent by Alice?● The attacker can:

○ Tamper with the message
○ Delete the message
○ Delay sending

Authenticating Messages (Solution)

m, a := h(Ka , m) m, a := h(Ka , m)

m, a

m’

m, a

How can Bob know that the
message was sent by Alice?

Message Authentication Code
MAC

What’s the Problem?

● If I encrypt the message, wouldn’t changes turn it rubbish? NO!
● The message could be a random number

○ Receiver cannot detect modifications on an unknown random number

● Some cipher modes only part of the message may be corrupted
○ Flipping bits
○ Change text
○ See last week’s demo

238/q[349
\][==`23u
dka123483
dkjq/\\..
-@eu29s+3

238/q[349
\][==`23u
dAAA23483
dkjq/\\..
-@eu29s+3

Ideal MAC: Unforgeability Problem

Let an attacker select n different messages, for which he is given the MAC value.
The attacker then has come up with a message n+1, with a valid MAC value.

(m1, a1)

(m2, a2)

(mn, an)

...
(mn+1, an+1)

CBC-MAC and CMAC

● Turns a CBC block cipher mode into a MAC function

● Encrypt the whole message as CBC and keep only the last block

H0 = IV
Hi = E(K, Pi ⨁ Hi-1) for i = 1, 2, …, n

MAC = Hk

● CMAC works similarly, except it xors Hk with a special value derived from the
key prior encryption

○ Recommended and standardized

BIRTHDAY PARADOX

● Consider that there are 23 people in a room. The
birthday paradox states that there is 50% chance
that two people have their birthdays on the same
day.

● Birthday attack: It is an attack where duplicate
values, aka collisions, appear.

● Collisions are more frequent than intuition might
suggest:

○ Consider a 64-bit block size for authentication. There
are 264 possible values.

○ Due to the birthday paradox after 232 transactions a
collision occurs, i.e., same value used twice

● This limits authentication security to n/2 bits where
n is the block size.

Attacks Example: CBC-MAC

● CBC-MAC suffers from some vulnerabilities that exploit the birthday paradox
○ When used carelessly; renew keys when approaching the limit 2n/2 messages

● Let M be a CBC-MAC function.
○ If M(a) = M(b), then M(a || c) = M(b || c) for any a, b, c. By the structure of CBC-MAC.
○ Consider a c of block length 1. Then we have:
○ M(a || c) = EK(c ⨁ M(a))
○ M(b || c) = EK(c ⨁ M(b))
○ Thus, M(a) = M(b)

● Attack in two stages
1. Attacker collects MACs until he finds a collision. This takes 264 steps for 128 block size.
2. Next time the attacker receives a || c, he can replace it with b || c without changing the MAC.

MAC via Cryptographic Hash Functions

● Compute MAC using a cryptographic hash function
○ MD5, SHA-1, SHA-2, and SHA-3

● Simple prefix-hashing MAC = h(K || m)
○ Not only collisions, but
○ Insecure even if h(⋅) is a cryptographically secure hash function!

■ Vulnerable to length extension attacks
● Internal state of the hash functions equals last digest
● Given h(m), the attacker can compute h(m||m’)

● Instead use HMAC,
○ MAC = h(K ⨁ a || h(K ⨁ b || m)) where a and b are derived keys (see Chapter 13 in Crypto101)

○ Prevents length extension attacks

PUTTING THINGS TOGETHER

● Using MACs we can ensure the integrity of a message
○ We can detect whether and attacker has tampered with the message

● Using block cipher modes we can ensure the secrecy of the message
○ We can prevent an attacker from reading the content of a message

BLOCK CIPHERS AND AUTHENTICATION

● Modern block ciphers modes include authentication
○ OCB: Offset Codebook Mode
○ CCM: Counter with CBC-MAC
○ GCM: Galois Counter Mode

● If not, combine block cipher modes with MAC functions
○ Encrypt and authenticate
○ Encrypt then authenticate
○ Authenticate then encrypt

ENCRYPT AND MAC

1. encryptionKey := gen(len)
macKey := gen(len)

2. Alice: ciphertext := E(encryptionKey, message)
 mac := h(macKey, m)

3. Alice -> Bob: mac || ciphertext

4. Bob: m’ := D(encryptionKey, ciphertext)
 mac’ := h(macKey, m’)
 if (mac = mac’)
 then output m’
 else abort

Initialization, keys shared by Alice and Bob

New operator, assign

MAC of the plaintext

ENCRYPT AND MAC

● Pros: MAC and ciphertext can be computed in parallel

● Cons: MAC must offer confidentiality
○ A requirement never stipulated

● Example: ssh (secure shell) protocol
○ Recommends AES-128-CBC for encryption
○ Recommends HMAC with SHA-2 for MAC

MAC THEN ENCRYPT

1. Alice: mac := h(macKey, m)
 ciphertext := E(encryptionKey, mac || m)

2. Alice -> Bob: ciphertext

3. Bob: mac’ || m’ := D(encryptionKey, ciphertext)
 if (mac’ = h(macKey, m’))
 then output m’
 else abort

MAC included in ciphertex

MAC THEN ENCRYPT

● Pros: Second most secure
● Cons: Computationally expensive

○ Always requires to sequentially compute decrypt and then mac

● Example SSL (Secure Socket Layers)
○ Recommends AES-128-CBC among others
○ For MAC it recommends HMAC, e.g., HMAC-SHA256

ENCRYPT THEN MAC

1. Alice: ciphertext := E(encryptionKey, m)
 mac := h(macKey, ciphertext)

2. Alice -> Bob: mac || ciphertext

3. Bob: mac’ := h(macKey, ciphertext)
 if (mac = mac’)
 then output D(encryptionKey, ciphertext)
 else abort

MAC of the ciphertex

ENCRYPT THEN MAC

● Pros: Considered most secure version (see textbook)

● Pros2: Only computes decrypt if mac succeeds
○ Potential increase in complexity
○ Less likely DoS attacks

● Example IPSec
○ Recommends AES-CBC for encryption and HMAC for MAC
○ or AES-GCM

users

Sign: the other
direction!

Asymmetric Encryption

Each Principal creates a key pair (Si,Pi)
where:

- Pi is called the public key
- Si is called the secret key

m, c := E(PBob , m) c, m := D(SBob , c)

c

c

c

Public keys are known to everyone

Secret keys only to the principal who
created them

users

RSA
Rivest-Shamir-Adleman

By: Rivest, Shamir & Adleman, 1977

Based on the difficulty of factoring
two large prime numbers

The factoring problem

Turing award recipients in 2002
contribution to making public-key
cryptography useful in practice

Can be used for encryption and
signing.

Slow. Huge key size.

RSA: KEY GENERATION

1. Choose two large primes p and q
2. Let n := p*q, n is the modulus for the public and private keys
3. Compute λ(n) = lcm(p − 1, q − 1)

○ Carmichael’s totient function

4. Choose an integer e such that
○ 1 < e < λ(n)
○ gcd(e, λ(n)) = 1
○ In other words, e and λ(n) are coprimes

5. Compute d, as d*e = 1 mod λ(n)
○ Modular multiplicative inverse

6. Public key is (n,e)
7. Private key is (n,d)

See Chapter 12 in the textbook for
details (and references therein)

RSA: ENCRYPTION AND DECRYPTION

● Encryption, given a message m

 c = me mod n

● Decryption

 m = cd mod n

RSA: ENCRYPTION AND DECRYPTION

● Encryption, given a message m

 c = me mod n

● Decryption

 m = cd mod n

Note that this operations are
computationally more expensive

than those of block ciphers

DIGITAL SIGNATURES

Public-key equivalent of
authentication

m, s := 𝜎(SAlice , m) 𝜈(PAlice , m, s)?

m,s

RSA: SIGNING

● Signing (𝜎) a message m

 h := hash(m)
 s := hd mod n

● Verify (𝜈)

 hash(m) = se mod n

Remember
 c = me mod n
 m = cd mod n

Plain RSA not fully secure

● It is deterministic, same plaintext and key, always produces the same
ciphertext

● Solution: Add a nonce to messages
○ Traditionally called padding
○ As described in the textbook, better use well-studied padding algorithms

Digital Signatures (Signing)

Public-key equivalent of
authentication

m, s := 𝜎(SAlice , m) 𝜈(PAlice , m, s)?

m,s

RSA Signatures

● Signing (𝜎) a message m

 h := hash(m)
 s := hd mod n

● Verify (𝜈)

 hash(m) = se mod n

The sender signs with her
Secret key (d,n)

The recipient verfies with the
Public key (e,n) of the sender

Cryptographic
hash function

RSA, Post-Quantum

the factoring problem can be efficiently solved by a
quantum computer w/ sufficiently many qubits.

● ⇒ RSA 2048 can be cracked by such a computer! (w/ 4099 qubits)
● Q-Day: when such computers become available.

○ several companies already possess quantum computers w/ ~100 qubits.
○ IBM announced it would have a ~1000-qubit quantum computer in the cloud in 2023.
○ estimation: QDay in 5-30 years.

NIST Post-Quantum Cryptography Standardization, 2016: call for proposals for
post-quantum safe public-key ciper. candidates passed scrutiny in 2022.
keep an eye on this, soon we’ll have new ciphers.

a lot of innovation in recent years, in terms of #qubits,
speed, and affordability.

●

d
quantum computers

several companies possess quantum computers with
100 qubits.

similar to
how we got AES

ciphers are a moving target; new threats
(attackers, tech) ⇒ new ciphers needed

Digital Signature Algorithm (DSA)

● Standardized by NIST in 1991

● Public key signing algorithm
○ Cannot encrypt/decrypt

● Security based on the complexity of the discrete logarithm problem
○ Recall Diffie-Hellman (Lec 7)
○ RSA relies on complexity of the prime factorization problem

● Security heavily relies on entropy, secrecy, and uniqueness of a random
signature chosen for signing

○ Break any of those ⇒ attackers can recover the secrets

Implementations details in
Chapter 12 of Crypto101

but similar to Diffie-Hellman

cryptosystems
TLS, PGP, OTR

in motion

cryptosystems

transport layer security
TLS

TLS
transport layer security

secures traffic on the Web: https

standard published by the IETF.

what’s in the cryptosystem:

● integrity: MAC
● confidentiality: DH
● key sharing: RSA/DSA

server & client must agree on which
algorithms to use: TLS Handshake

cryptosystems - in motion

cryptosystems - in motion - TLS

(T
CP

 +
) T

LS
 H

an
ds

ha
ke

cr

yp
to

sy
st

em
s

- i
n

m
ot

io
n

- T
LS

TLS Handshake

1. Client: ClientHelloMessage
a. Maximum TLS version it supports.

2. Server: ServerHelloMessage
a. Protocol version, random version,

cipher suite and compression method

3. Server: Certificate
a. Sends server certificate and

4. Server: ServerKeyExchange
(optional)

5. Server: CertificateRequest
a. Request the certificate of the Client

6. ServerHelloDone
a. Server done with handshake

6. Client: Certificate
a. Sends client certificate

7. ClientKeyExchange
a. PreMasterKey encrypted with public

key of server certificate

8. Client: CertificateVerify
a. Signature over previous messages

using private key. Allows server to
confirm client’s access to private key

9. Client: ChangeCipherSpec
a. From now on auth and enc

10. Server: ChangeCipherSpec
a. From now on auth and enc

cryptosystems - in motion - TLS

handshake continues…

Cl
ie

nt
H

el
lo

Se
rv

er
H

el
lo

T
LS

 H
an

ds
ha

ke
, d

et
ai

ls
cr

yp
to

sy
st

em
s

- i
n

m
ot

io
n

- T
LS

handshake continued

T
LS

 H
an

ds
ha

ke
, d

et
ai

ls
cr

yp
to

sy
st

em
s

- i
n

m
ot

io
n

- T
LS

H
as

he
s

cr
yp

to
sy

st
em

s
- i

n
m

ot
io

n
- T

LS

TLS 1.2 VS TLS 1.3
cryptosystems - in motion - TLS

Downgrade attack

POODLE attack.

fix: disable SSL 3.0 support.
on the server.

in fact, disable

● TLS 1.1 (predictable IV)
● TLS 1.2

while you’re at it!!!

cryptosystems - in motion - TLS

Session Hijacking

CRIME attack. TLS compression.

fix: disable TLS compression

compression was actually
recommended in
Standards!

BREACH: HTTP compression

fix: disable HTTP compression

cryptosystems - in motion - TLS

victory!
secure, authenticated connections to anyone!

… but, they are who they say they are?
how do I know (unless they hand me the key in person)?

cryptosystems - in motion - TLS

Public Key Infrastructure (PKI)
cryptosystems - in motion - TLS

chain of trust

certificate authority
(trusted)

Ch
ai

n
of

 T
ru

st
cr

yp
to

sy
st

em
s

- i
n

m
ot

io
n

- T
LS

victory!
finally.

wait, what’s all that other stuff?

cryptosystems - in motion - TLS

at rest

cryptosystems

pretty good privacy
PGP

PGP
pretty good privacy

standard for encrypting & sign data.

what’s in the cryptosystem:

● integrity: hash
● confidentiality: gen key
● authenticity: RSA
● non-repudiation

users sign each other’s keys,
forming a web of trust.

Cryptosystems - at rest

Cryptosystems - at rest - PGP

Web of Trust, Enc, Dec

Anecdotes:
● Snowden: “What’s your public key?”
● to classify as munition?
● alleged child-porn hoarder released;

FBI couldn’t decrypt his PGP-encrypted drive.

Password Storage pass

● encrypt/decrypt passwords using PGP keys (gpg)
○ encrypt using public key. store.
○ decrypt using privacy key
○ note: a high level explanation; details probably more complex

● can be combined with physical tokens (Lec 5)

● demo!

Cryptosystems - at rest - PGP

off the record

Cryptosystems

OTR

OTR
off the record

secure instant messaging between
people (E2EE: end-to-end encrypt)

what’s in the cryptosystem:

● integrity: SHA-1 HMAC
● confidentiality: AES
● key sharing: DH

properties

● forward secrecy
● malleable encryption
● deniable authentication.

Cryptosystems - off the record

I didn’t say that

What wasn’t me

Connections & Sharing Messages
Cryptosystems - off the record - OTR

Password Storage
By machines

Storage by Machines

● Passwords are typically stored in a file or database in the computer

● Store passwords in plaintext
○ Not a good idea
○ Requires perfect unbreakable access control (next lecture)
○ Requires trusted sysadmins

● Not unlikely that a password file is stolen
○ https://haveibeenpwned.com/

Storage by Machines

● Use a function f that:
1. Makes easy to compute f(p) for a password p

■ Even though relatively slow authentication is not
necessarily bad

2. It is hard to compute p from f(p)
3. Hard to find f(q) = f(p) where p ≠ q

Storage by Machines

● Use a function f(⋅) that:
1. Makes easy to compute f(p) for a password p

■ Even though relatively slow authentication is not
necessarily bad

2. It is hard to compute p from f(p)
3. Hard to find f(q) = f(p) where p ≠ q

● Cryptographic hash functions are enough!
1. One-way property fulfills 1. and 2.
2. Collision resistance fulfills property 3.

Storage via Cryptographic Hash Function

● Let the password file (or database) be composed of pairs
○ 〈uidi, h(passi)〉where

■ uidi is an identifier
■ passi is the corresponding password
■ h(⋅) is a cryptographic hash function

● Authentication protocol in a System with
a password file Pwd = {<uid1, h(p1)>, <uid2, h(p2)>, ...}:
1. Alice -> System: uid, pass
2. System: if <uid, h(pass)> ∊ Pwd

 then Deem Alice authenticated

● Let the password file (or database) be composed of pairs
○ 〈uidi, h(passi)〉where

■ uidi is an identifier
■ passi is the corresponding password
■ h(⋅) is a cryptographic hash function

● Authentication protocol in a System with
a password file Pwd = {<uid1, h(p1)>, <uid2, h(p2)>, ...}:
1. Alice -> System: uid, pass
2. System: if <uid, h(pass)> ∊ Pwd

 then Deem Alice authenticated

Storage via Cryptographic Hash Function

Assumption: the communication channel
between Alice and the system is be
secure:

● Keyboard
○ Trust driver and hardware

● Network
○ TLS (coming in a few slides)

Offline Attacks

● Attackers may build a dictionary containing hashes of common passwords
○ Top password rankings
○ Password recipes
○ Dict = {<p1, h(p1)>, <p2, h(p2)>, <p3, h(p3)>, ...}

● Approaches
○ Build Dict only once, attack many systems (rainbow tables)
○ Build Dict on demand for specific systems

● A dictionary attack tries to find the hashes in a dictionary (Dict) that also appear
in a stolen password file (PwD)

FoundPwd = { <uid, p> | <uid, h(p)> ∊ PwD ∧ <p, h(p)> ∊ Dict }

Adding Salt

● A protection against offline attacks is making
computing Dict unfeasible

● Add a nonce ni , called salt, to each pair in Pwd
○ SaltyPwd = {<uidi, ni, h(pi || ni)>} for i = 1,2,3, ...
○ Salt is not secret

● Computing SaltyDict is harder than computing Dict
○ Given nounces of size b bits SaltyDict is j=2b times larger than Dict

SaltyDict = {<p1, h(p1||n1)>, <p1,h(p1||n2)>, …, <p1,h(p1||nj)>, <p2, h(p2||n1)>, <p2,h(p2||n2)> , ...}

Can the attacker reduce the
size of SaltyDict without losing
accuracy? [Mentimeter]

https://www.menti.com/achs6b6gto

Limited Offline Attacks

● Since salt is stored in plain in SaltyPwd, attacker can reduce the size of
SaltyDict by focusing only on the nounces appearing in SaltyPwD

● If SaltyPwd contains N entries, SaltyDict will have N|Dict|
○ As opposed to the 2b|Dict| that we mentioned earlier

● Possible Solution: Keep the salt secret
○ SecretSaltyPwd = {<uid, h(pi || ni)>} for i = 1, 2, 3, ...

1. Alice -> System: uid, password
2. System: if (∃ n : <uid, h(p || n)> ∈ SecretSaltyPwd)

 then Deem Alice authenticated

Authentication

Limited Offline Attacks

● Since salt is stored in plain in SaltyPwd, attacker can reduce the size of
SaltyDict by focusing only on the nounces appearing in SaltyPwD

● If SaltyPwd contains N entries, SaltyDict will have N|Dict|
○ As opposed to the 2b|Dict| that we mentioned earlier

● Possible Solution: Keep the salt secret
○ SecretSaltyPwd = {<uid, h(pi || ni)>} for i = 1, 2, 3, ...

1. Alice -> System: uid, password
2. System: if (∃ n : <uid, h(p || n)> ∈ SecretSaltyPwd)

 then Deem Alice authenticated

Authentication

● Computationally expensive. We need
to search for all possible nounces

● Solution? Salt and pepper. See
Chapter 5 of Fred Schneider’s book.

Linux Password Storage

● /etc/passwd
○ Contains

■ Username, and user related information

● /etc/shadow
○ Hashing algorithm
○ Salt (not secret --- not well seasoned 😏)
○ The hash of the password concatenated with the salt

Linux Password Storage

● /etc/passwd
○ Contains

■ Username, and user related information

● /etc/shadow
○ Hashing algorithm
○ Salt (not secret --- not well seasoned 😏)
○ The hash of the password concatenated with the salt

1. U -> S: uid, passU
2. S: if <uid, salt||hpass,_> ∊ /etc/shadow

 then if h(salt||passU) = hpass
 then Deem U authenticated

Summary

Summary CIA: Confidentiality,
Integrity,
Availability? ...

The Devil is in the Details

what cryptographic engineers do:

● domain knowledge
● design, implement, test, validate

cryptographic systems
● cryptanalysis

security vs. performance: crypto breaks.

don’t roll your own crypto! if you type
AES: doing it wrong
DES: doing it extra wrong
MD5, SHA: maybe wrong?

Summary

Shafi Goldwasser
Professor, Cryptographer, Turing Award winner

