Cryptography: Integrity

Applied Information Security
Lecture 8

Last Lecture

you don't control the wire. (Dolev-Yao adversary).
e tamper, delete, delay: MitM! active
need to

e detect tampering of messages
message == expected message

e detect spoofing
sender == expected sender

with that, we can exchange keys... to create secure channels

“Securely”

Confidentiality:
only the intended recipient of a message should be able
to read it.

Today's Topics

cryptography for authentication!

hashing SHA secure hash algorithms
authentication
o Message MAC message authentication code
o User RSA one-time pad
e cryptosystems p
o inmotion TLS transport layer security
o atrest PGP pretty good privacy
o off-the-record OTR off the record

e password storage

Hashing

MD5, SHA-1, SHA-2, SHA-3

Hash Functions

e Input: Arbitrary size string

hash
keys function hashes
e Output: fixed-size string e
: . . . John Smith
o Obs: collisions may occur (see John Smith 01
and‘S.andra Dee on the right) | T 02
o Collisions expected; we are mapping from 03

. . . . 04
infinite to finite domains. Sam Doe 05

e Properties:

o Easyto compute h(m) given that we know m >andra Dee 15

o Fortwo identical inputs always produce the
same output; s =s’ = h(s) = h(s’)

https://en.wikipedia.org/wiki/Hash_function

(Ideal) Cryptographic Hash Functions

hash functions is typically

The output of cryptographic
called digest

Additional stronger properties required: Digest

cryptographic

DFCD 3454 BBEA 788A 751A

: 696C 24D9 7009 CA99 2D17
function

e Infeasible to find a message given a hash value

. . o Th d f t hi
o One way function (remember colours video in Lec 7) it e i 0086 4655 87D CBE2 823
5 ACC7 6CD1 90B1 EE6E 3ABC
. . the blue dog function
o Infeasible to find m given that we know h(m)
Uhislee Crypﬁog[r_]aphic 8FD8 7558 7851 4F32 DIC6
o . . jumps ouer as
e Infeasible to find two different messages with o Tk o VEEL V) SR £
the same hash (collision resistance) The red fox cryptographic| [——
.] , [t i hash D401 COA9 7D9A 46AF FBAS
o Infeasible to find h(m) = h(m’) where m #m the blue dog function
. . . Ui lr=e i cryptegraphic 8ACA D682 D588 4CT75 4BF4
e Small modification on messages trigger i B hash
e blue dog function
S I g n Iﬁ Ca nt C h a n g eS https://en.wikipedia.org/wiki/Cryptographic_hash_function

o Avalanche effect
o Similar m and m’ implies very different h(m) and h(m’)

(Ideal) Cryptographic Hash Functions

hash functions is typically

The output of cryptographic
called digest

Digest
cryptographic DECD 3454 BBEA 788A 751A
. . o,
e Infeasible to find a message given a hash value
The red fox cryptographic

o One way function (remember colours video in Lec 7 it e e
' [nction ACC7 6CD1 90B1 EE6E 3ABC
o Infeasible to find m given that we know h(m)

Additional stronger properties required:

Can we ensure this _
prOpel’ty in genera|? :gﬂ:aphm 8FD8 7558 7851 4F32 DIC6

e |Infeasible to find two different messages V| 7, =% = = i VEEL V) SR £

the same hash (collision resistance) pnereatont] Jcryprographic| [css vess sara come oise

o Infeasible to find h(m) = h(m’) where m z m’ the blue dog function okl ek

. . . The red fox cryptographic onn 5 = -

e Small modification on messages trigger E Desh bt i ol
S i g n iﬁ Ca nt C h a n g eS https://en.wikipedia.org/wiki/Cryptographic_hash_function

o Avalanche effect
o Similar m and m’ implies very different h(m) and h(m’) ﬁ Is this property needed?

https://www.menti.com/achs6b6gto

Real Cryptographic Hash Functions

e MDS5 Ron Rivest (1991)

o 128 bits output
o Collision resistance broken
o Can find collisions in seconds

SHA-T NSA (1 995) SHA-O0 released and shortly after
o 160 bits output replaced by SHA-1 due to an

o Deprecated; broken for pdf files (http://shattered.io/) undisclosed “significant flaw"

e SHA-2 NSA (2001)

o Family of functions with output sizes: 225, 256, 385, 513 bits

o Not broken yet, believed to be vulnerable to same attacks than SHA-1
e SHA-3 NIST competition (2015)

o Same output sizes as SHA-2
o Strongest security properties

authentication

MAC, RSA

messages

Authenticating Messages (Problem)

A,

I love you

Authenticating Messages (Problem)

u

I love you

I love you

Authenticating Messages (Problem)

u

I love you | hate you

I love you

Authenticating Messages (Problem)

u

I love you | hate you

I love you | hate you

Authenticating Messages (Problem)

e The attacker can:
o Tamper with the message
o Delete the message
o Delay sending

u

How can Bob know that the
message was sent by Alice?

I love you

| hate you

I love you

| hate you

Authenticating Messages (Solution)

Message Authentication Code
MAC

9
4.
-

How can Bob know that the
message was sent by Alice?

What's the Problem?

e If | encrypt the message, wouldn't changes turn it rubbish? NO'

e The message could be a random number
o Receiver cannot detect modifications on an unknown random number

e Some cipher modes only part of the message may be corrupted
o Flipping bits
o Change text
o See last week's demo

238/q[349
\][=="23u
dkal23483

238/q[349
\][=="23u
dAAA23483

dkjq/\\..
-Qeu29s+3

dkjq/\\..
-Q@eu29s+3

Ideal MAC: Unforgeability Problem

Let an attacker select n different messages, for which he is given the MAC value.
The attacker then has come up with a message n+1, with a valid MAC value.

(m-|' a1)

2" 72

> (mn+1’ an+1)

(m_a)

CBC-MAC and CMAC

e Turns a CBC block cipher mode into a MAC function

e Encrypt the whole message as CBC and keep only the last block

H, =V
H. = E(K, P& HH) fori=1,2,..,n
MAC = H,

e CMAC works similarly, except it xors H, with a special value derived from the

key prior encryption
o Recommended and standardized

BIRTHDAY PARADOX

e Consider that there are 23 people in a room. The
birthday paradox states that there is 50% chance
that two people have their birthdays on the same
day.

e Birthday attack: It is an attack where duplicate
values, aka collisions, appear.

e Collisions are more frequent than intuition might

suggest:
o Consider a 64-bit block size for authentication. There
are 2% possible values.
o Due to the birthday paradox after 232 transactions a
collision occurs, i.e., same value used twice
e This limits authentication security to n/2 bits where

n is the block size.

Attacks Example: CBC-MAC

e CBC-MAC suffers from some vulnerabilities that exploit the birthday paradox
o When used carelessly; renew keys when approaching the limit 22 messages

e Let Mbe a CBC-MAC function.
o If M(a) = M(b), then M(a || ¢) = M(b || ¢) for any a, b, c. By the structure of CBC-MAC.
o Consider a ¢ of block length 1. Then we have:
o M| c)=E(c ®M(a))
o M(b| c)=E(cDM(b))
o Thus, M(a) = M(b)
e Attack in two stages
1. Attacker collects MACs until he finds a collision. This takes 2%* steps for 128 block size.
2. Next time the attacker receives a || ¢, he can replace it with b || ¢ without changing the MAC.

MAC via Cryptographic Hash Functions

e Compute MAC using a cryptographic hash function
o MB5, SHA SHA-2, and SHA-3

e Simple prefix-hashing MAC =h(K || m)
o Not only collisions, but
o Insecure even if h(-) is a cryptographically secure hash function!
m Vulnerable to length extension attacks
e Internal state of the hash functions equals last digest
e Given h(m), the attacker can compute h(m|jm’)

e Instead use HMAC,

o MAC=hK®a| h(K®Db | m)) where a and b are derived keys (see Chapter 13 in Crypto101)
o Prevents length extension attacks

PUTTING THINGS TOGETHER

e Using MACs we can ensure the integrity of a message
o We can detect whether and attacker has tampered with the message

e Using block cipher modes we can ensure the secrecy of the message
o We can prevent an attacker from reading the content of a message

BLOCK CIPHERS AND AUTHENTICATION

e Modern block ciphers modes include authentication
o OCB: Offset Codebook Mode
o CCM: Counter with CBC-MAC
o GCM: Galois Counter Mode

e If not, combine block cipher modes with MAC functions
o Encrypt and authenticate
o Encrypt then authenticate
o Authenticate then encrypt

ENCRYPT AND MAC

New operator, assign

1. encryptionKey := gen(len)

macKey := gen(len)

2. Alice: ciphertext

mac

h (macKey, m)

Initialization, keys shared by Alice and Bob

E (encryptionKey, message)

T MAC of the plaintext
3. Alice -> Bob: mac || ciphertext
4., Bob: m’ := D(encryptionKey, ciphertext)
mac’ := h(macKey, m’)
if (mac = mac’)

then output m’
else abort

ENCRYPT AND MAC

e Pros: MAC and ciphertext can be computed in parallel

e Cons: MAC must offer confidentiality
o Arequirement never stipulated

e Example: ssh (secure shell) protocol
o Recommends AES-128-CBC for encryption
o Recommends HMAC with SHA-2 for MAC

MAC THEN ENCRYPT

1. Alice: mac := h (macKey, m)

ciphertext E (encryptionKey, mac || m)

ﬁ MAC included in ciphertex

2. Alice -> Bob: ciphertext

3. Bob: mac’ || m’ := D(encryptionKey, ciphertext)
if (mac’ = h(macKey, m’))
then output m’
else abort

MAC THEN ENCRYPT

e Pros: Second most secure

e (Cons: Computationally expensive
o Always requires to sequentially compute decrypt and then mac

e Example SSL (Secure Socket Layers)

o Recommends AES-128-CBC among others
o For MAC it recommends HMAC, e.g., HMAC-SHA256

ENCRYPT THEN MAC

1. Alice: ciphertext E (encryptionKey, m)

mac = h (macKey, ciphertext)
2. Alice -> Bob: mac || ciphertext ﬁMAC of the ciphertex
3. Bob: mac’ := h(macKey, ciphertext)
if (mac = mac’)

then output D(encryptionKey, ciphertext)
else abort

ENCRYPT THEN MAC

e Pros: Considered most secure version (see textbook)

e Pros2: Only computes decrypt if mac succeeds
o Potential increase in complexity
o Less likely DoS attacks

e Example IPSec

o Recommends AES-CBC for encryption and HMAC for MAC
o or AES-GCM

Sign: the other
direction!

Asymmetric Encryption

Different Keys

users

A4$h*L@9.
T6=#/>B#1 acryption
R06/J2.>1L D

1PRL39P20

Plain Text Cipher Text Plain Text

Asymmetric Encryption

Each Principal creates a key pair (S,P)
where:

P.is called the public key

Si is called the secret key

u

Public keys are known to everyone

Secret keys only to the principal who
created them

users

RSA

Rivest-Shamir-Adleman

By: Rivest, Shamir & Adleman, 1977

Based on the difficulty of factoring
two large prime numbers

The factoring problem

Turing award recipients in 2002
contribution to making public-key
cryptography useful in practice

Can be used for encryption and
signing.

Slow. Huge key size.

RSA:KEY GENERATION

1. Choose two large primes p and q
2. Letn:=p*q, nisthe modulus for the public and private keys
3. ComputeA(n)=lcm(p-1,9-1)

o Carmichael’s totient function

4. Choose an integer e such that
o 1<e<\n) See Chapter 12 in the textbook for

o gcd(e, A(n)) =1 details (and references therein)
o In other words, e and A(n) are coprimes

5. Compute d, as d*e = 1 mod A(n)

o Modular multiplicative inverse
6. Public key is (n,e)
7. Private key is (n,d)

RSA: ENCRYPTION AND DECRYPTION

e Encryption, given a message m
c =m®modn
e Decryption

m = c9 mod n

RSA: ENCRYPTION AND DECRYPTION

e Encryption, given a message m
c=m®modn
e Decryption
m=c%modn

Note that this operations are

computationally more expensive
than those of block ciphers

DIGITAL SIGNATURES

Public-key equivalent of
authentication

RSA: SIGNING

e Signing (¢) a message m

h := hash(m)
s:=h%modn
o Verify (v)

hash(m) = s* mod n

Remember

c=mé¢modn
m =c9modn

Plain RSA not fully secure

e Itis deterministic, same plaintext and key, always produces the same
ciphertext

e Solution: Add a nonce to messages
o Traditionally called padding
o As described in the textbook, better use well-studied padding algorithms

Digital Signatures (Signing)

Public-key equivalent of
authentication

RSA Signatures

Signing (0) a message m

Verify (v)

h := hash(m)
s:=hYmodn

hash(m) = s* mod n

Cryptographic
hash function

The sender signs with her
Secret key (d,n)

The recipient verfies with the
Public key (e,n) of the sender

RSA, Post-Quantum

the factoring problem can be efficiently solved by a
quantum computer w/ sufficiently many qubits. —» | KRR

e = RSA 2048 can be cracked by such a computer! (w/ 4099 qubits)

e (Q-Day: when such computers become available.

o several companies already possess quantum computers w/ ~100 qubits.
o IBM announced it would have a ~1000-qubit quantum computer in the cloud in 2023.

o estimation: QDay in 5-30 years. similar to
how we got AES

NIST Post-Quantum Cryptography Standardization, 2016: call for proposals for
post-quantum safe public-key ciper. candidates passed scrutiny in 2022.

keep an eye on this, soon we'll have new ciphers. <[ciphers are a moving target; new threats
(attackers, tech) = new ciphers needed

Digital Signature Algorithm (DSA)

e Standardized by NIST in 1991

Implementations details in
Chapter 12 of Crypto101
but similar to Diffie-Hellman

e Public key signing algorithm
o Cannot encrypt/decrypt

e Security based on the complexity of the discrete logarithm problem
o Recall Diffie-Hellman (Lec 7)
o RSA relies on complexity of the prime factorization problem

e Security heavily relies on entropy, secrecy, and uniqueness of a random

signature chosen for signing
o Break any of those = attackers can recover the secrets

cryptosystems

TLS, PGP, OTR

cryptosystems

1N motion
transport layer security

LS

T

cryptosystems - in motion

TLS

transport layer security

=

\S

secures traffic on the Web: https
standard published by the IETF.

what'’s in the cryptosystem:

e integrity: MAC
e confidentiality: DH
e key sharing: RSA/DSA

server & client must agree on which
algorithms to use: TLS Handshake

cryptosystems - in motion - TLS

FIGURE 5: WHAT'S IN A CIPHERSUITE
A breakdown of the components that combine to form a cipher suite

Strength Mode

|ECDHE|—RSA-| 128-GC|\/!—|SHA256|

| | |

Key Exchange Authentication Cipher MAC

cryptosystems - in motion - TLS

(TCP +) TLS Handshake

SYN

ACK

ClientHello

ClientKeyExchange

ChangeCipherSpec -

Finished

Client
Server

G RERNRRRR

___________________________ = SYN ACK

ServerHello
___________________________ - - Certificate
ServerHelloDone

ChangeCipherSpec
Finished

suigs
dJol

swoLl
S1L

cryptosystems - in motion - TLS

TLS Handshake

1.

Client: ClientHelloMessage
a. Maximum TLS version it supports.

Server: ServerHelloMessage
a. Protocol version, random version,
cipher suite and compression method

Server: Certificate
a. Sends server certificate and

Server: ServerKeyExchange
(optional)
Server: CertificateRequest

a. Request the certificate of the Client

ServerHelloDone
a. Server done with handshake

10.

Client: Certificate
a. Sends client certificate

ClientKeyExchange
a. PreMasterKey encrypted with public
key of server certificate
Client: CertificateVerify
a. Signature over previous messages
using private key. Allows server to
confirm client’s access to private key
Client: ChangeCipherSpec
a. From now on auth and enc
Server: ChangeCipherSpec

a. From now on auth and enc

cryptosystems - in motion - TLS

TLS Handshake, details

ClientHello

ServerHello

TLS Client

TLS Server

Generate client random>

,| TLS handshake ClientHello
' ciient_version=TLS vi.Z

, random=__.
' session_id=

: Handshake F

\cipher_suites=TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, ...

'+ Ext. SNI: www.gabriel.urdhr.com

, Ext signature_algorithms: ecdsa_secp256rl_sha256,ecdsa_secp384rl_sha256, ...
' Ext. supported_groups: x25519,secpp256rl,secpp384rl,secpp521rl,ffdhe2048,ffdhe4096

, Ext. ALPN: "h2", "http/1.1"

TLS handshake ServerHello
server_version=TLS viz
random=...
session_id=0x0f4f69969...

Ext. SNI: (empty)
Ext. ALPN: "http/1.1"

cipher_suite=TLS_ECDHE_RSA WITH AES_128 GCM_SHA256

.
>

Generate server random>

TLS handshake Certificate, certificate chain

<
~

<Va|idate certificate chain)

TLS handshake ServerKeyExchange, ephemeral DH public key + RSA signature
_ (signature over DH parameters, client random and server random)

<Generate ephemeral DH keypair)

Verify signature 2
T »

' _|TLS handshake ServerHelloDone

Generate ephemeral DH keypair)

handshake continues...

cryptosystems - in motion - TLS

TLS Handshake, details

TLS Client

:|TLS handshake ClientKeyExchange,| ephemeral DH public key

handshake continued

TLS Server

|
|
1
!
>,

Pre master secret derivation

Master secret derivation from pre master secret, client and server random
(and all previous handshake messages when the extended_master_secret is used)

A g b

Key material derivation from master secret, client and server random

>
)
)

/| TLS ChangeCipherSpec

/| TLS handshake (enc) Finished: verify_data=... (covers master secret and previous handhsake messages) _
0

I
>
)|

I

I

TLS ChangeCipherSpec

{ Verify verify_data }

o

-

TLS handshake (enc) Finished: verify_data=... (covers master secret and previous handhsake messages)

<

§ Verify verify_data 2
T

: Application data k

par /

loop /
' TLS appdata (enc) ...

. TLS Alert (enc) warning close_notify

' TLS appdata (enc) ...

-
-«

:4 TLS Alert (enc) wamning close_notify

3

cryptosystems - in motion - TLS

Hashes

Sighing

Hash
function 101100110101

Hash

Data

Encrypt hash
using signer's
private key

mO

111101101110
»
Certificate Signature

\
\
~~ ------ -
-~
Y

Digitally signed data

Verification

Digitally signed data

N

111101101110

Signature

Data Decrypt
using signer's

. public key
?

i

101100110101 N 101100110101

Hash Hash

If the hashes are equal, the signature is valid.

cryptosystems - in motion - TLS

TLS1.2VSTLS13

Web Site Identity
Web site: twitter.com
owner: This web site does not supply ownership information.

Verified by: DigiCert Inc
Expireson: 1 April 2020

View Certificate

Privacy & History
Have | visited this web site before today? No

Web Site Identity

Web site: web.whatsapp.com

owner: This web site does not supply ownership information.
Verified by: DigiCert Inc

Expires on: 1 January 2020

View Certificate

Privacy & History

Is this web site storing information on
my computer?
Have | saved any passwords for this web

Yes, cookies and 97.8 kB

of site data Clear Cookies and Site Data

Have | visited this web site before today?

Is this web site storing information on my
computer?

Have | saved any passwords for this web

No

Yes, cookies and 1.6 MB
of site data

Clear Cookies and Site Data

. No View Saved Passwords
site? =

Technical Details

Connection Encrypted (TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 128 bit keys, TLS 1.2)

The page you are viewing was encrypted before being transmitted over the Internet.

Encryption makes it difficult For unauthorised people to view information travelling between
computers. It is therefore unlikely that anyone read this page as it travelled across the network.

Help

i No View Saved Passwords
site?

Technical Details

Connection Encrypted (TLS_AES_128_GCM_SHA256, 128 bit keys, TLS 1.3)

The page you are viewing was encrypted before being transmitted over the Internet.

Encryption makes it difficult for unauthorised people to view information travelling between
computers. It is therefore unlikely that anyone read this page as it travelled across the network.

Help

cryptosystems - in motion - TLS

Downgrade attack

PO O D L E attaC k Padding Oracle On Downgraded Legacy Encryption (POODLE) attack

M disable SSL 3.0 support. Hello. Do you support TLS 1.27 €
on the server. &) Do you support TLS 1.12 7

Do you support TLS 1.0?

In faCt; disable Do you support SSL 3.0?

e TLS 1.1 (predictable IV)
e TLS1.2

while you're at it!!!

cryptosystems - in motion - TLS

Session Hijacking

CRIME attack. TLS compression.

fix: disable TLS compression

compression was actually
recommended in
Standards!

BREACH: HTTP compression

fix: disable HTTP compression

STEP ‘

Compression Ratio Info-leak Made Easy (CRIME) attack

STEP 2
The script initiates a
connection to a third party

websalc ex examplebank com

Victim visits example.com which
contains malicious javascript and is

STEP3

controlled by the attacker ‘l
N\
E—

The attacker injects known plaintext into victim's cookies and then monitors the size of the response,

\\/‘4‘

®

cryptosystems - in motion - TLS

victory!

secure, authenticated connections to anyone!

... but, they are who they say they are?
how do | know (unless they hand me the key in person)?

jane? and- oh hang on-

you- - how've you

yeah he's bob-

2 i'm jane. ask susie
bob?

and who are you?

yeah he’s examg

& i'm bob. ask jane

e.ample.com?

and who are you?
sure mans

ask bob!

are you really

example.com?

Bl

susie

:=1 jane

bob

example.com

(Vp)]
—]
|
a
(@)
pe
o
=
=
7]
=
(¢D)
—
n
>
n
(@)
-
o,
>
-
(&)

)
(0
—
i

H

o
O

5
©

<

O

End Entity Certificate

Owner’s Distinguishe&
Name

Owner's PubliKey

Issuer’s (CA) Reference
Distinguished Name
; Sign R
Issuer’s (CA) Signature |e====== - Issuer’s Privat&ey] Intermediate Certificate
L
Issuer’s Di;tinguished
Name
{ Issuer's PubliKey |
Verify Signature e

Root CA
Distinguished Name

Reference

Root CA Signature

lgpeeait9n_ {7 issuer's Privat&ey }

Intermediate Certificate

Issuer’s Distinguished
Name

Verify Signature

Issuer's PubliKey

Root CA Reference
Distinguished Name
) Sign T
Root CA Signature [m————— + Root CA PrivateKey J Root Certificate
Self-Sign RooL CA

Distinguished Name

} [Root CA Publickey |
| B —h

_---ul Root CA Signature

Verify Signature

FRRTIRIS R

cryptosystems - in motion - TLS

victory!

finally.

wait, what's all that other stuff?

cryptosystems

b ‘:l

X n 5 | 5%

N'g, by : ’¢
3 _ 4 | P ey

.;31‘ § ‘22' / £ .

S | 1| #5 1

t re St i PP i (L e o) if' =4 1
d s |

§
. ’
i i ”
e WLk AEEE
YRR
e |

t . ; g

sk

2

g,

‘;55
e R

pretty good privacy
PGP

N N
SR
B

Cryptosystems - at rest

PGP

pretty good privacy

standard for encrypting & sign data.

what'’s in the cryptosystem:

e integrity: hash

e confidentiality: gen key
e authenticity: RSA

e non-repudiation

users sign each other’s keys,
forming a web of trust.

Cryptosystems - at rest - PGP

Web of Trust, Enc, De

direct Manuel
7
indirect
Y
trust
Anecdotes:
e Snowden: “What's your public key?”
e to classify as munition?

e alleged child-porn hoarder released,;
FBI couldn't decrypt his PGP-encrypted drive.

Susi
Stranger

indirect trust indirect
trust

Manfred
Stranger ¥

Encrypt

Generate
Random
Key

mO| TlakvAQkCu2u

| / Random Key

Encrypt key
using receiver's
public key

RSA

Encrypt data
using random
key

B (4fzNeBCRSYqy

Data Encrypted Key

Encrypted Message

Decrypt

Encrypted Message

M 4fzNeBCRSYqV

Encrypted Key

Decrypt using
receiver's
private key

RSA

Data mO| TlakvAQkCu2u

Decrypt data
using key

Data

Cryptosystems - at rest - PGP

Password Storage pass

e encrypt/decrypt passwords using PGP keys (gpg)
o encrypt using public key. store.
o decrypt using privacy key
o note: a high level explanation; details probably more complex

e can be combined with physical tokens (Lec 5)

e demo!

Cryptosystems

off the record

OTR

Cryptosystems - off the record

OTR

off the record

secure instant messaging between
people (E2EE: end-to-end encrypt)

what's in the cryptosystem:

e integrity: SHA-1 HMAC

e confidentiality: AES

e key sharing: DH
properties

Vs

\

| didn't say that L e forward secrecy
e malleable encryption

Vs

\

e }o deniable authentication.

Cryptosystems - off the record - OTR

Connections & Sharing Messages

otr.tol /
l

In

Encryptoin
Encrypto

3 messages
Buddy [+: —>

Password Storage

By machines

Storage by Machines

e Passwords are typically stored in a file or database in the computer

e Store passwords in plaintext
o Not agoodidea
o Requires perfect unbreakable access control (next lecture)
o Requires trusted sysadmins

e Not unlikely that a password file is stolen
o https://haveibeenpwned.com/

Storage by Machines

e Use a function fthat:
1. Makes easy to compute f(p) for a password p
m Even though relatively slow authentication is not
necessarily bad
2. Itis hard to compute p from f(p)
3. Hard to find f(q) = f(p) where p # q

Storage by Machines

e Use a function f(-) that:
1. Makes easy to compute f(p) for a password p

m Even though relatively slow authentication is not we Can DO If!
o““i"’}

necessarily bad
2. Itis hard to compute p from f(p)
3. Hard to find f(q) = f(p) where p # q

e Cryptographic hash functions are enough!

1. One-way property fulfills 1. and 2.
2. Collision resistance fulfills property 3.

Storage via Cryptographic Hash Function

e Let the password file (or database) be composed of pairs
o (uid, h(pass,)) where
m uid.is an identifier
m pass, is the corresponding password
m h(')is a cryptographic hash function

e Authentication protocol in a System with
a password file Pwd = {<uid,, h(p,)>, <uid, h(p,)>, ...}:
1. Alice -> System: uid, pass
2. System: if <uid, h(pass)> € Pwd
then Deem Alice authenticated

Storage via Cryptographic Hash Function

(Assumption: the communication channel\atabase) be composed of pairs
between Alice and the system is be

secure:
e Keyboard _
o Trust driver and hardware 1ding password
e Network ic hash function
\ o TLS (comingin a few slides)

e Authenticatio in a System with
a password fi d = {<uid, h(p,)>, <uid,, h(p,)>, ...}
1. Alice -> System: uid, pass
2. System: if <uid, h(pass)> € Pwd
then Deem Alice authenticated

Offline Attacks

e Attackers may build a dictionary containing hashes of common passwords
o Top password rankings
o Password recipes

-y
e Approaches

O Build Dict only once, attack many systems (rainbow tables) J Oh.lt/}m

o Build Dict on demand for specific systems > IppCr

e A dictionary attack tries to find the hashes in a dictionary (Dict) that also appear
in a stolen password file (PwD)

FoundPwd = { <uid, p> | <uid, h(p)> € PwD A <p, h(p)> € Dict }

Adding Salt

e A protection against offline attacks is making
computing Dict unfeasible

e Addanonce n, called salt, to each pair in Pwd
o SaltyPwd = {<uid, n, h(p, || n,)>} for i=1,23, ..
o Saltis not secret

e Computing SaltyDict is harder than computing Dict Can the attacker reduce the
. : . R . : size of SaltyDict without losing
o Given nounces of size b bits SaltyDict is j=2° times larger than Dict | accuracy? [Mentimeter]

SaltyDict = {<p,. h(p,lIn,)>, <p, h(p,[1,)>, ..., <p, h(p,[n)>, <p,. h(p,n,)>, <p, h(p,n,)>, ...}

https://www.menti.com/achs6b6gto

Limited Offline Attacks

e Since salt is stored in plain in SaltyPwd, attacker can reduce the size of
SaltyDict by focusing only on the nounces appearing in SaltyPwD

e If SaltyPwd contains N entries, SaltyDict will have N|Dict|
o As opposed to the 2°Dict| that we mentioned earlier

e Possible Solution: Keep the salt secret
o SecretSaltyPwd = {<uid, h(p, || n,)>} fori=1,2,3, ...

/ Authentication
1. Alice -> System: uid, password

2. System: if (I n : <uid, h(p || n)> € SecretSaltyPwd)
then Deem Alice authenticated

Limited Offline Attacks

e Since salt is stored in plain in SaltyPwd, attacker can reduce the size of
SaltyDict by focusing only on the nounces appearing in SaltyPwD

e If SaltyPwd contains N entries, SaltyDict will have N|Dict|
e mentioned earlier

-

e Computationally expensive. We need
to search for all possible nounces

It secret

e Solution? Salt and pepper. See > fori=1,2,3, ...

Chapter 5 of Fred Schneider’s book.

“‘-====={ Authentication
1. Alice -> Sys

2. System: if (I n : <uid, h(p || n)> € SecretSaltyPwd)
then Deem Alice authenticated

uid, password

Linux Password Storage

e /etc/passwd
o Contains
m Username, and user related information

e /etc/shadow
o Hashing algorithm
o Salt (not secret - not well seasoned &)
o The hash of the password concatenated with the salt

Linux Password Storage

e /etc/passwd
o Contains
m Username, and user related information

e /etc/shadow
o Hashing algorithm
o Salt (not secret - not well seasoned &)
o The hash of the password concatenated with the salt

1. U -> S: uid, pass;
2. S: if <uid, salt| |hpass, > € /etc/shadow
then if h(salt| IpassU) = hpass
then Deem U authenticated

summary

CIA: Confidentiality,
Integrity,

“Securely” Availability? ..

Confidentiality:
only the intended recipient of a message should be able
to read it.

Summary

The Devil 1s 1in the Details

what cryptographic engineers do:

domain knowledge
design, implement, test, validate
cryptographic systems

e cryptanalysis

security vs. performance: crypto breaks.
don't roll your own crypto! if you type

AES: doing it wrong
DES: doing it extra wrong

Shafi Goldwasser
MD5, SHA: maybe wrong? Professor, Cryptographer, Turing Award winner

