
Crypto: Confidentiality

Applied Information Security
Lecture 7

“When Julius Caesar sent messages to his generals,
 he didn’t trust his messengers…

 so he replaced every A in his messages with a D,
 every B with an E, and so on through the alphabet.
 Only someone who knew the “shift by 3” rule
 could decipher his messages.

 And so we begin.” - Introduction to Cryptography

cryptography!

● history (before XOR)
● perfect secrecy OTP one-time pad

● key generation RNG random number generator

● encrypt/decrypt
○ a block AES advanced encryption standard
○ a stream of blocks CBC cipher block chaining
○ a stream ∎∎∎ salsa20

● key exchange DH Diffie-Hellman

sounds good?

spoiler: we do not know how to build secure software (yet?) !

Today’s Topics

In Pictures: Symmetric-Key Cryptography

Encrypt

E

K

M {M}K

In Pictures: Symmetric-Key Cryptography

Encrypt

E

K

M {M}K

message

key

“ciphertext”

encryption function M encrypted with K

“plaintext” “cipher”

In Pictures: Symmetric-Key Cryptography

Encrypt

E

K

DM

K

M{M}K {M}K

Decrypt

Encryption/Decryption should be fast.

Kerckhoff’s Principle: Security of encryption scheme
depends only on K, not on E or D.
(why: compromised “dictionary” makes E lost forever)

security /
performance
tradeoff

history
before XOR

history

history

how many keys are there?

key space size
= number of rotations
= size of latin alphabet
= 26

(2 are not depicted)

try decrypting with
each one!

brute-force attack

history

that looks readable.
the rest is not.

history

history

history

history

history

history

history

history

history

history

history

history

history

More Old Ciphers

700 BC Scytale Ancient Greece
transposition cipher

600 BC Atbash Israel (Essenes, Jewish rebels)
substitution cipher; maps each letter to its inverse.

1500s? Pigpen Knights Templars, Freemasons
Substitution cipher, polyalphabetic

history

then came the World Wars...

history

Information Warfare

1917. UK declares war on Germany;
cuts undersea cables to/from Germany.

Germany instead uses international cables
& radio. encrypts.

German foreign secretary Zimmermann
telegrams Mexico & Japan; asking them to
pre-emptive strike USA.

UK intercepts, breaks the cipher, informs USA.
USA enters WWI. Germany is defeated.

history

history

Enigma

Lost war due to broken cipher. Germany invests in stronger cipher machines.

broken also;
greatly shortened
WWII

Alan Turing
(“The Imitation Game”)

history

attacker has (a set of)
ciphertexts

attacker can obtain
plaintext of some ciphertexts

attacker can obtain
ciphertext of any plaintext

attacker has
ciphertext and its plaintext crib

history

perfect secrecy
one-time pad

OTP

perfect secrecy

perfect secrecy

Source: The Legend of Zelda

perfect secrecy

why is ⊕encryption?

if you know C,
then you cannot
predict A or B.

∀A .∃B . A⊕B = C

(and vice versa)

Source: The Legend of Zelda

perfect secrecy

perfect secrecy

1917,
1919

perfect secrecy

perfect secrecy

1949

Key Re-use ⇒ Crib-Dragging

CA = A⊕K
CB = B⊕K

CA⊕CB = (A⊕K)⊕(B⊕K)
= (A⊕K)⊕(K⊕B)
= A⊕(K⊕K)⊕B
= A⊕0⊕B
= A⊕B

Is it bad to know A⊕B, and not A, B?

perfect secrecy

Key Re-use ⇒ Crib-Dragging

CA = A⊕K
CB = B⊕K

CA⊕CB = (A⊕K)⊕(B⊕K)
= (A⊕K)⊕(K⊕B)
= A⊕(K⊕K)⊕B
= A⊕0⊕B
= A⊕B

Is it bad to know A⊕B, and not A, B?

Can also be done on text.

perfect secrecy

victory!
use OTP for everything!

… but how do I share a key stream?
where do I get a key stream?

perfect secrecy

key generation
random number generator

RNG

Randomness on a Computer

recall OTP:

● key must be random,
● key must never be re-used.

how do we get infinite randomness (nondeterministic),
on a finite machine (deterministic)?

● true RNG (HRNG)
● pseudo-RNG (PRNG)
● cryptographically-secure pseudo-RNG (CSPRNG)

key generation

True RNG
HRNG

sample an unpredictable
physical process.

● quantum process
radioactive decay, shot noise (e.g. photons)

● thermal process
Nyquist (electrons through resistant medium)

● oscillator drift
ring oscillator frequency drift

● timing events
keyboard/network I/O

too slow (run out of entropy),
too unreliable.

key generation

Pseudo-RNG
PRNG

take seed, use it to generate
numbers.

John Von Neumann: kn+1 = kn
2 w/

first and last digit removed.
ex: kn= 121, kn+1 = 1|464|1 = 464

All eventually hit a period.

predictable.

“Any one who considers
 arithmetical methods
 of producing random digits
 is, of course,
 in a state of sin.”

 - John von Neumann

state

key generation

Cryptographically
Secure PRNG

CSPRNG

unpredictable PRNG.
do not leak info on its state.

if you must pick yourself: always
pick CSPRNG provided by your OS

● /dev/urandom (*NIX)
● CryptGenRandom (Windows)

big seed ⇒ big period.

PL interface to these. Python:
os.urandom, random.SystemRandom

key generation

Kerberos V4
used PRNG.
broken.

victory!
CSPRNG to get our OTP key stream!

… but is that really secure?

key generation

A Practical Stream Cipher?

recall OTP:

● key must be random,
● key must never be re-used.

idea: Vernom stream cipher, w/ CSPRNG key stream.
finite HR ⇒ infinite PR. perfect secrecy?

⊕

key generation

A Practical Stream Cipher?

recall OTP:

● key must be random,
● key must never be re-used.

idea: Vernam stream cipher, w/ CSPRNG key stream.
finite HR ⇒ infinite PR. perfect secrecy?
no: K ≤ M (because K is the seed)
security rests on unpredictability of the CSPRNG. good/bad?

instead: encryption & key-expansion together. (AES+CBC)
intuition: the more you encrypt w/ a K, the more breakable.

⊕

key generation

not enough randomness?
(used in synchronous stream ciphers)

(RC4 & Salsa20 are fancy versions)

capitalize on randomness
that may be present in the data

encrypt / decrypt
random number generator

RNG

a block

encrypt / decrypt

advanced encryption standard
AES

What is a Block Cipher?

it’s just a giant lookup table.

● D(K, E(K, M)) = M
● given a K, E is a permutation.
● changing K should not make

predictable which E emerges
(random permutation).

example: Caesar not a block cipher.

Key Plaintext Ciphertext

K M1 C1

K M2 C2

K M3 C3

K M4 C4

...

encrypt / decrypt - a block
block = fixed-size
sequence of bits

keyed
permutation

M, C drawn from
same set

What is a Block Cipher?

it’s just a giant lookup table.

● D(K, E(K, M)) = M
● given a K, E is a permutation.
● changing K should not make

predictable which E emerges
(random permutation).

example: Caesar not a block cipher.

● changing K, you can predict
which E emerges.

Key Plaintext Ciphertext

K M1 C1

K M2 C2

K M3 C3

K M4 C4

...

encrypt / decrypt - a block
block = fixed-size
sequence of bits

keyed
permutation

M, C drawn from
same set

AES
advanced encryption standard

NSA’s DES fails; NIST starts an open
process for proposal AES.

by: Vincent Rijmen & Joan Daemen

● confusion substitute

● diffusion permute

● key the only secret

no known practical attacks.
parallelizable!

3DES is still used, in ancient
(financial) applications, w/ HW
support. Slow, but secure?

encrypt / decrypt - a block

AES, in Pictures

prep: derive 10* separate 128^-bit
keys from master key.
each round:

1. apply 8-bit S-box on each cell.
2. shift rows as depicted.
3. multiply each column w/ a

constant (matrix)
4. XOR in the round-key.

*: or 12 rounds, or 14 rounds
^: or 192-bit, or 256-bit

encrypt / decrypt - a block - AES

key
expansion

load data into
state matrix

AES, in Pictures

prep: derive 10* separate 128^-bit
keys from master key.
each round:

1. apply 8-bit S-box on each cell.
2. shift rows as depicted.
3. multiply each column w/ a

constant (matrix)
4. XOR in the round-key.

*: or 12 rounds, or 14 rounds
^: or 192-bit, or 256-bit

encrypt / decrypt - a block - AES

substitute

AES, in Pictures

prep: derive 10* separate 128^-bit
keys from master key.
each round:

1. apply 8-bit S-box on each cell.
2. shift rows as depicted.
3. multiply each column w/ a

constant (matrix)
4. XOR in the round-key.

*: or 12 rounds, or 14 rounds
^: or 192-bit, or 256-bit

encrypt / decrypt - a block - AES

permute

“rotate” row
k steps

AES, in Pictures

prep: derive 10* separate 128^-bit
keys from master key.
each round:

1. apply 8-bit S-box on each cell.
2. shift rows as depicted.
3. multiply each column w/ a

constant (matrix)
4. XOR in the round-key.

*: or 12 rounds, or 14 rounds
^: or 192-bit, or 256-bit

encrypt / decrypt - a block - AES

substitute

AES, in Pictures

prep: derive 10* separate 128^-bit
keys from master key.
each round:

1. apply 8-bit S-box on each cell.
2. shift rows as depicted.
3. multiply each column w/ a

constant (matrix)
4. XOR in the round-key.

*: or 12 rounds, or 14 rounds
^: or 192-bit, or 256-bit

encrypt / decrypt - a block - AES

key

victory!
I can encrypt a block w/ a small key

… but my data is much larger than a block...

encrypt / decrypt - a block

a stream of blocks

encrypt / decrypt

cipher block chaining mode
CBC

From Block Cipher to Stream Cipher

we have a block cipher.

our data is larger than a block (pad to fit)

we can use our block cipher to encrypt our stream,
by cutting our stream into blocks,
and encrypting the blocks.
sounds easy...

encrypt / decrypt - a stream of blocks

El
ec

tr
on

ic
 C

od
eb

oo
k

en
cr

yp
t /

 d
ec

ry
pt

 -
a

st
re

am
 o

f b
lo

ck
s

problem?

ECB Attack

Each block M in the stream
always encrypts to
the same ciphertext block C.

encrypt / decrypt - a stream of blocks

Ci
ph

er
 B

lo
ck

 C
ha

in
in

g

en
cr

yp
t /

 d
ec

ry
pt

 -
a

st
re

am
 o

f b
lo

ck
s

unpredictable.
problem?

Ci
ph

er
 B

lo
ck

 C
ha

in
in

g

en
cr

yp
t /

 d
ec

ry
pt

 -
a

st
re

am
 o

f b
lo

ck
s

unpredictable.
problem?

SQL injection to
acquire encrypted
blocks. Guess IV ⇒
decrypt.

Co
un

te
r

en
cr

yp
t /

 d
ec

ry
pt

 -
a

st
re

am
 o

f b
lo

ck
s

“jump”-able

a stream

encrypt / decrypt

salsa20

RC4
Rivest cipher 4

By: Ron Rivest (RSA fame).

generates key stream.

used in WEP.

widely used on desktop and mobile!

fast!

...broken :-/

encrypt / decrypt - a stream

RC4

generates a keystream.

1. increments i
2. looks up the ith element of S, S[i],

and adds that to j
3. exchanges the values of S[i] and S[j]

then uses the sum S[i] + S[j] (modulo 256)
as an index to fetch a third element of S
(the keystream value K below)

4. then bitwise exclusive ORed (XORed)
with the next byte of the message
to produce the next byte of either
ciphertext or plaintext.

encrypt / decrypt - a stream

RC4 Attacks

bias in the output bytes.

● first three bytes of the key correlated with the first byte of the keystream.
● first few bytes of the state related to the key with a simple(linear) relation.

attacks only get better.

● second byte produced by cipher is twice as likely to be zero as it should be.

etc. etc. , eventually WEP broken!

encrypt / decrypt - a stream - RC4

Salsa20

By: Daniel J. Bernstein

generates key stream.

jumpable!

pretty fast

secure (so far); attacks break up to
8 out of 13 rounds

encrypt / decrypt - a stream

several rounds of ARX:
(A) modular addition +
(R) rotation with fixed rotation amounts <<<
(X) XOR ⊕

victory!
I can encrypt any amount of data!

… and send it over an untrusted medium?
how do we agree on a key?

encrypt / decrypt

key exchange
Diffie Hellman

DH
Diffie-Hellman

by: Whitfield Diffie & Martin Hellman

allows two people to create a shared
key, without ever having met.

relies on the hardness of the
discrete logarithm problem.

fundamental to security today.

key exchange

Diffie Hellman w/ Colors
key exchange - DH

prep: common paint (public knowledge)

1. Alice & Bob each pick a secret.
2. each mixes secret w/ common,

and sends to the other.
3. each mixes secret w/ received.

Diffie Hellman w/ Colors
key exchange - DH

prep: common paint (public knowledge)

1. Alice & Bob each pick a secret.
2. each mixes secret w/ common,

and sends to the other.
3. each mixes secret w/ received.

Diffie Hellman w/ Colors
key exchange - DH

prep: common paint (public knowledge)

1. Alice & Bob each pick a secret.
2. each mixes secret w/ common,

and sends to the other.
3. each mixes secret w/ received.

Diffie Hellman w/ Colors
key exchange - DH

prep: common paint (public knowledge)

1. Alice & Bob each pick a secret.
2. each mixes secret w/ common,

and sends to the other.
3. each mixes secret w/ received.

Diffie Hellman w/ Colors
key exchange - DH

prep: common paint (public knowledge)

1. Alice & Bob each pick a secret.
2. each mixes secret w/ common,

and sends to the other.
3. each mixes secret w/ received.

Summary

victory!
I can get a shared key with you!

… surely, we can talk securely now?

summary

we have only
considered passive,
eavesdropping
adversaries...

summary

An attacker can
do so much more.

su
m

m
ar

y

R
ep

la
y

A
tt

ac
k

su
m

m
ar

y
just repeat
encrypted
traffic.

D
if

fie
-H

el
lm

an
 M

it
M

su
m

m
ar

y
man in the
middle

IV Attack

which initialization vector to pick?

● must be unpredictable.

BEAST attack on TLS1.0!

(MitM)

breaks encryption.

summary

IV Attack

which initialization vector to pick?

● must be unpredictable.

BEAST attack on TLS1.0!

(MitM)

breaks encryption.

summary

CBC Padding Oracle Attack

trick server into
decrypting any
snooped block.

try flipping bits, ask
server if padding is OK.

find valid padding ⇒
learn a byte.

worst-case 8*256 guesses.

summary

Need: Authenticated Encryption

you don’t control the wire. (Dolev-Yao adversary).
not enough to be able to exchange keys.

need to

● prevent tampering of messages,
● prevent spoofing.

we use hashing and signatures for that (next lecture!)

summary

