
Applied Information Security
Summer 2021, Lecture 6

Authentication

Methods of Authentication

you are characterized by a (large) set of attributes.

identity: set of attributes. you have many identities (citizen, student, ...)
enrollment: validate your attributes, before your identity added to system.
authentication: “given an identity, and some attributes, do these match?”

inconvenient to do enrollment-level validation (physical presence, interview, etc.)
when you log in. instead, check fewer, easy to protect & hard to spoof attributes:

something you know
something you have
something you are

methods, or factors,
of authentication

now: modern, state of the art,
of authentication.

passwords
something you know:

you heard about
 password policy.
how do you make a good
password that satisfies it?

Strong password that’s easy to remember

Bruce Schneier’s password scheme:

1. choose a personal sentence.
2. combine it with some personal tricks

so that it modifies this sentence to create a robust password.

ex: “When I was in Grade 4, I forged my dad’s signature” → W1wiG4,,,1fmds)

tricks used here: initial letters ; I → 1 ; , → ,,, ;) at the end

problem: re-used scheme inferable, remembering many schemes is hard.
solution: use this password as a master password in a password manager.

easy to remembereasy to remember

this is,
effectively,
a hash
function

passwords

hard to reverse

Strong password that’s easy to remember

Bruce Schneier’s password scheme:

1. choose a personal sentence.
2. combine it with some personal tricks

so that it modifies this sentence to create a robust password.

ex: “When I was in Grade 4, I forged my dad’s signature” → W1wiG4,,,1fmds)

tricks used here: initial letters ; I → 1 ; , → ,,, ;) at the end

problem: re-used scheme is inferable. remembering many schemes is hard.
solution: use this password as a master password in a password manager.

easy to remembereasy to remember

this is,
effectively,
a hash
function

passwords

hard to reverse

Save Password
passwords - password manager

account creation

password reset

elsewhere

Generate Password
passwords - password manager

Password Manager: GoogleView Passwords
passwords - password manager

Password Manager: GoogleCheck Passwords
passwords - password manager

Password Manager: GoogleProtect Passwords
passwords - password manager

Google account password.
one strong password, to
protect all your other passwords.

Password Manager: GooglePlatform Integration
passwords - password manager

Others

proprietary (Apple) free (a little more in lecture 8)

passwords - password managers

Summary

use a password manager!

● better than recycling passwords,
● better than using passwords generated by a

predictable scheme.

which one: tradeoff

● trust (Google? Apple?)
● convenience (integration, already set up)
● your tech know-how (can you protect your password store?)

passwords

multi-factor authentication
MFA

Pa
ss

w
or

ds
 (a

lo
ne

)
ar

e
in

su
ffi

ci
en

t

m
ul

ti
-f

ac
to

r
au

th
en

ti
ca

ti
on

m
ul

ti
-f

ac
to

r
au

th
en

ti
ca

ti
on

Pa
ss

w
or

ds
 (a

lo
ne

)
ar

e
in

su
ffi

ci
en

t

Defense in Depth - No Single Point of Failure

harder for attacker to obtain multiple factors

● A might crack your password
● B might steal your phone
● unlikely that A and B are the same person

drawbacks

● more demanding for service provider
● more demanding for service consumer

(extra steps, more SW to install, physical token to protect, etc.)

multi-factor authentication

(one-time password) tokens

(historically,)
additional factor,

something you have:

we look at two types: based on
● challenge-response, or
● synchronized clocks

Challenge-Response, on paper (TAN)

bank issues e.g. 50 TANs to you, on paper (pickup at bank; authenticate etc.).
to authorize a bank transaction, provide one TAN. once provided,
it is (marked by bank as) “spent” (one-time password). how MFA:

● TANs useless w/o login credentials,
● login credentials do not enable transfers w/o TANs

example: NemID nøglekort (key card)

● indexed (iTAN); bank asks for a specific TAN.

problems: copy the TANs, replay attack, man-in-the-middle attack, ...

(one-time password) tokens Transaction Authentication Number

Challenge-Response, on paper (TAN)

bank issues e.g. 50 TANs to you, on paper (pickup at bank; authenticate etc.).
to authorize a bank transaction, provide one TAN. once provided,
it is (marked by bank as) “spent” (one-time password). how MFA:

● TANs useless w/o login credentials,
● login credentials do not enable transfers w/o TANs

example: NemID nøglekort (key card)

● indexed (iTAN); bank asks for a specific TAN.

problems: copy the TANs, replay attack, man-in-the-middle attack, ...

(one-time password) tokens Transaction Authentication Number

Challenge-Response, hardware token

bank issues a hardware token you (pickup at bank; authenticate etc.).
to authorize a bank transaction, unlock token & input challenge from bank.
once provided, token generates response (which you send to bank).

example: Länsförsäkringar säkerhetsdosa

similar to iTAN.

● harder to read (unlock),
● harder to copy/steal w/o it being noticed.

(one-time password) tokens

Synchronized Clocks (hardware token)

to authorize a bank transaction, press button on token.
token generates a number (which you send to bank).

how it works: bank generates secret. embeds it in token.
token has a clock, synchronized w/ bank’s clock.
token & bank both generate hash of secret + current time.

example: RSA SecurID

example: NemID nøgleviser

protected against replay attacks (OTPs expire).

(one-time password) tokens

(one-time password) tokens

(modern)
additional factor,

something you have:

we look at two types:
● apps, or
● USB key

App

app receives a request for authorization.
you grant it by swiping in the app.

how it works: implemented using either, or both, of

● challenge-response (cryptographic keys)
● synchronized clocks

example: NemID nøgleapp
example: Microsoft Authenticator

problems: still vulnerable to man-in-the-middle, + rootkit

(one-time password) tokens

App

app receives a request for authorization.
you grant it by swiping in the app.

how it works: implemented using either, or both, of

● challenge-response (cryptographic keys)
● synchronized clocks

example: NemID nøgleapp
example: Microsoft Authenticator

problems: still vulnerable to man-in-the-middle, + rootkit

(one-time password) tokens

next slide

App, man in the middle phishing attack
(one-time password) tokens

USB key

service (e.g. Web client, in your browser) requests your authorization.
you grant it by touching a USB key.

how it works: implemented using either, or both, of

● challenge-response (cryptographic keys)
● synchronized clocks

example: YubiKey

harder to hack (separate device). thwarts man-in-the-middle
(USB key is bound to origin at account creation)

(one-time password) tokens

Summary

use multi-factor authentication!

● much harder to hack an account.

at least: authenticator app
ideally: USB-key (phishing protection).

adoption for both is picking up fast.
becoming standard / expected.

(one-time password) tokens

Single Sign-On
SSO

Minimum Exposure - Reduce Attack Surface

having many accounts (with many services) is.

● demanding: set up MFA for each of them.
● not secure: more accounts ⇒ larger attack surface.

instead, level of indirection: identity as a service (IDaaS).

● less demanding
● smaller attack surface
● risk: single point of failure: the identity provider

 (i.e. if they’re taken down, get hacked, etc.)
 (easier to make one thing bullet-proof than many.)

Single Sign-On

how does
it work?

SSO at ITU, LearnIT
Single Sign-On

SSO at ITU, LearnIT: log in “at the app”
Single Sign-On

SSO at ITU, LearnIT: request forwarded...
Single Sign-On

SSO at ITU, LearnIT: … and you’re logged in.
Single Sign-On

what
happened?

SSO at ITU, LearnITWhat happened?
Single Sign-On (SSO)

today’s protocols:
● SAML
● OIDC (future)

App & IdP need to be
“friends” (App needs
to register at IdP)

Summary

use SSO!

● more secure (smaller attack surface)
● less demanding

developer: don’t roll your own authentication.
(bullet-proofing authentication is hard)

user: only use an identity provider that you trust.

Single Sign-On

Tokens (Cookies)
login

Authentication on the Web
know / have / are

recall: inconvenient to do enrollment-level validation (physical presence, etc.)
when you login. instead, check fewer, easy to protect & hard to spoof attributes.

web: server won’t know that two requests from same host are from you.
you need to authenticate per request. for know/are, that’s inconvenient.

solution: tokens. exchange know / are for a token (have, in SW).

● future requests: authenticate by including token in request.
● assumption: token can only be obtained from the server (by)

today: specific kind of token (cookie). more general ones later (bearer token)

Tokens (Cookies)

Cookie-Based Authentication

Encrypt session-id

Decrypt session-id

need to store information
about the session?

(Session-Based Authentication)

only need to know
who this is?

no need to store stuff.

Tokens (Cookies)

stage in checkout procedure,
shopping cart, ...

maybe also MFA

or

or

Cookie Security Tips

how to secure cookie-based authentication:

● use the HttpOnly attribute
prevents JavaScript from accessing it in the client

● use a short lifetime (with Expires=)
limits impact of a stolen cookie

● set SameSite=Strict or Lax
prevents cookie from being shipped to third-parties
on cross-site requests.

Tokens (Cookies)

Summary

user:

● use a password manager (w/ a strong password)
● use multi-factor authentication
● use single sign-on

developer:

● good password policy
● provide multi-factor authentication
● don’t roll your own authentication
● secure that cookie

