Authentication: Humans

Applied Information Security

Autumn 2020, Lecture 6

PREVIOUS IN AIS...

- Hacking
- Security administration
- Security Engineering
- Security Principles
- Security Mechanisms
- Security Requirements
- Security Evaluation

Interesting learning resource:
https://www.hacksplaining.com/lessons

PREVIOUS IN AIS...

- Hacking
- Security administration
- Security Engineering
- Security Principles
- Security Mechanisms
- Security Requirements
- Security Evaluation

Gold Standard

Butler W. Lampson

- "Who said that?"
- "Who is getting that information?"

authorize access

- "Who can do which operation on which object?" future
audit decision of guard
- "What happened? Why?"

TODAY'S TOPICS

- Identities
- Authentication Methods
- Something you know
- Protocol Design
- Something you have
- Something you are
- Privacy Pitfalls

IDENTITIES

WHAT IS AN IDENTITY?

- We define an identity as a set of attributes
- $I=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$
- An attribute is a statement or property about an individual
- Name
- Email
- CPR Nr
- IP Address
- Citizenship
- Age
- When an attribute belongs to exactly one person it is called an identifier
- CPR Nr

WHAT IS AN IDENTITY? EXAMPLE

- Attributes
- Name: Homer Simpson
- Middle name: Joe
- Birthdate: May 12, 1956
- Married to Marge Simpson
- Social Security Number: 568-47-0008 (identifier)

- ...
- Identities
- Security technician at Nuclear plant
- Cashier at Kwik-E-Mart
- Student at Springfield University, Degree in Nuclear Physics

○ ...

IDENTIFICATION VS AUTHENTICATION

- Identification
- Determine the identity of an individual from a set of attributes
- Example: Surveillance cameras looking for an individual in a crowd

- Authentication
- Determining whether an identity matches a set of attributes
- Example: A security officer at border control verifying that a passport belongs to its bearer

ENROLLMENT

- Enrollment is the process of establishing validity of a set of attributes, with an identity, in a system
- Create an account
- Get an ID card, a visa, ...
- Claimed attributes are not always checked
- Airport Hotspots do not verify emails
- Websites do not verify name or age
- Governments do verify attributes by requiring physical presence, digital certificates, ...

SOMETHING YOU KNOW

SOMETHING YOU KNOW

- Knowledge based authentication
- Mother's maiden name
- Favourite book
- Best friend
- Secret based authentication
- Personal Identification Numbers (PINs)
- Passwords
- Paraphrases

KNOWLEDGE BASED AUTHENTICATION

- During enrollment, individuals provide answers to a set of queries
- The system uses a subset of these queries to authenticate the individual in the future
- The best queries have answers that are not widely known
- Ideally only by the person to be authenticated
- Bad Example: What is Raúl Pardo Jiménez mother's first surname?
- In Spain, typically, newborns' surnames are constructed using the first surname of the father followed by the first surname of the mother.

KNOWLEDGE BASED AUTHENTICATION

- Vulnerability: More than one system may use the same questions
- Therefore, they know the answer of the individuals and can impersonate them.
- Identification is also vulnerable, e.g., right to data deletion in GDPR
- Many companies ask for your passport or valid ID to prove your identity

KNOWLEDGE BASED AUTHENTICATION

- Pros: Convenient
- Doesn't place much burden on people to remember things
- Cons: Relies on how secret the information is
- That is, how easy is for an attacker to access the answers to the questions

SECRET BASED AUTHENTICATION

- Authentication can be based on a secret a person knows
- Given that the secret is
- Unknown to attackers
- Difficult to guess
- Difficult to steal
- Examples
- Personal Identification Numbers (PINs)
- Passwords
- Paraphrases

SECRET BASED AUTHENTICATION

- Authentication can be based on a secret a person knows
- Given that the secret is
- Unknown to attackers
- Difficult to guess
- Difficult to steal
- Examples
- Personal Identification Numbers (PINs)
- Passwords
- Paraphrases

We focus on passwords, but the content applies to PINs, paraphrases or other types of secrets for human authentication

PASSWORD LIFE CYCLE

- Create: User chooses a password
- Store: Human/System stores a password
- Use: User request system to supply a password for authentication
- Change/recover/reset: User changes password

CREATE A PASSWORD

- How to choose a password?

CREATE A PASSWORD

- Invented by a human
- Easy to remember
- Word in dictionary
- Loved-one's name
- "asdf", 12345, "password", ...
- Weak-passwords
- Easy to guess
- Generated by a computer
- Pseudorandom string
- Difficult to remember
- Strong passwords
- Generated by a sysadmin
- Any of the two previous cases
- Top ten passwords [cnn.com, 2019]

1. 123456
2. 123456789
3. qwerty
4. password
5. 111111
6. 12345678
7. abc123
8. 1234567
9. password1
10. 12345

CREATE A PASSWORD

- Invented by a human
- Easy to remember
- Word in dictionary
- Loved-one's name
- "asdf", 12345, "password", ...
- Weak-passwords
- Easy to guess
- Generated by a computer
- Pseudorandom string
- Difficult to remember
- Strong passwords
- Generated by a sysadmin
- Any of the two previous cases

STRONG PASSWORDS

- Strong passwords are passwords that are difficult to guess
- Difficult to brute force, if 2^{x} guesses required then the password has strength "x"
- Consider passwords that are / characters long from an alphabet of n characters
- There are n^{\prime} different passwords
- Solve x in $2^{x}=n^{\prime}$
- Then $x=I \log _{2} n$
- $\quad x$ is also known as the entropy of the password

STRONG PASSWORDS

- Strong passwords are passwords that are difficult to guess
- Difficult to brute force, if 2^{x} guesses required then the password has strength " x "
- Consider passwords that are / characters long from an alphabet of n characters
- There are n^{\prime} different passwords
- Solve x in $2^{x}=n^{\prime}$
- Then $x=I \log _{2} n$
- $\quad x$ is also known as the entropy of the password
- Assumes all elements equally likely (uniformly distributed)
- " 12345 " as strong as "@"+2F"? @

PASSWORD RECIPES

- Rules for composing passwords
- For instance:
- At least one upper- and lower-case,
- At least one special symbol
- At least one digit
- Minimum length 20-30 characters
- (...)

In the exercise session you will implement your own password recipe validator with

- Recipes tend to be burdensome for users
- Users try to pick the easiest possible password that complies with requirements
- Attackers know this, therefore the recipe loses effectiveness
- [Mentimeter]

Password Strength

~ 44 BITS OF ENTROPY

$2^{44}=550$ YEARS AT
1000 GUESSES/SEC

DIFFICULTY TO GUESS: HARD

DIFFICULTY TO REMEMBER:

HARD

DIFFICULTY TO REMEMBER:
YOU'VE ALREADY MEMORIZEO IT

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THIRT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

PASSWORD GUESSING: ONLINE ATTACKS

- The system is used by the attacker to determine whether a guessed password is correct for an individual
- Brute force
- Using a dictionary (collection of possible passwords)
- Defences
- Make authentication time consuming
- Impose a limit on unsuccessful attempts
- Restrict amount of information from unsuccessful attempts
- Do not mention whether attributes are in the system (e.g, email address or username)
- Covert channels
- Time

PASSWORD GUESSING: ONLINE ATTACKS

- The system is used by the attacker to determine whether a guessed password is correct for an individual
- Brute force
- Using a dictionary (collection of possible passwords)
- Defences

We discuss in detail offline attacks in Lecture 8.

- Make authentication time consuming
- Impose a limit on unsuccessful attempts
- Restrict amount of information from unsuccessful attempts
- Do not mention whether attributes are in the system (e.g, email address or username)
- Covert channels
- Time

STORING PASSWORDS

- Ideally there should be a password for each identity
- Two main storage options

1. Storage by humans
2. Storage by machines Explained in detail in Lecture 8

STORAGE BY HUMANS

- Little memory capacity
- Consequently:
- Reuse passwords
- Record them physically

VULNERABILITIES OF HUMANS STORAGE

- Reuse passwords
- Attacker needs to comprise one password and he will be able to authenticate in all other systems
- Undermines Principle of Least Privilege
- Record physically
- Can be seen by anyone
- Typically, the storage place is not very secure and is nearby the authentication interface

Wifi password leak during the Estonian 2013 elections (source: https://estoniaevoting.org/photos/opsec-wifi/)

SOME ATTACKS TO STEAL PASSWORDS

- Compromised I/O
- Man-in-the-middle (network)

- Fake login forms
- Social Engineering

INTERMEZZO

Protocol Design

PROTOCOL DESIGN: PWD AUTHENTICATOR

Consider a user (User) and a system (System). At enrollment, User provides a password to the system, then System stores it in the database. System can retrieve the password by using the function db_pwd (uid) where uid is the user identifier.

Possible option: using sequence diagrams to define the protocol (we will not use them in this course)

PROTOCOL DESIGN: PWD AUTHENTICATOR

Consider a user (User) and a system (System). At enrollment, User provides a password to the system, then System stores it in the database. System can retrieve the password by using the function db_pwd (uid) where uid is the user identifier.

The password authentication protocol is defined as follows:

1. User -> System: <uid, pwd>
2. System: if pwd == db_pwd(uid)
then Deem User authenticated
else System -> User: "Incorrect pwd"

Protocol design language introduced in [NS78] specifically to design and analyze cryptographic protocols.

ONLINE LOGIN PWD EXAMPLE

1. User -> PC: I want to login at http://server.com/
2. PC -> User: "Enter user id and password"
3. User -> PC: <uid, pwd>
4. PC -> Server: <uid,pwd>
5. Server: if pwd = db_pwd(uid)
```
then Deem uid authenticated
Server -> PC: res with res = OK
else Server -> PC: res with res = INCORRECT_PWD
```

6. PC: if res = OK
then PC -> User: "logged-in correctly"
else PC -> User: "Incorrect username/password"

ONLINE LOGIN PWD EXAMPLE

1. User -> PC: I want to login at http://server.com/

Steps 1-4 model the usual interaction of a user accessing a login form (e.g. via a web browser)
2. PC $->$ User: "Enter user id and password"
3. User -> PC: <uid, pwd>
4. PC -> Server: <uid, pwd>
5. Server: if pwd = db_pwd(uid)

Step 5 models the check performed on the server side. Also, the effect of result.

```
then Deem uid authenticated
Server -> PC: res with res = OK
else Server \(\rightarrow\) PC: res with res = INCORRECT_PWD
```

6. PC: if res $=\mathrm{OK}$
then PC -> User: "logged-in correctly"
else PC -> User: "Incorrect username/password"
Step 6 is optional, it models notification of the result to the user

PROTOCOL DESIGN LANGUAGE

- Each step of the protocol must be enumerated 1. s_{1} 2. s_{2}

3. s_{3}

See the protocol design notes on Learnit

Each step s_{n} must be of the form:
i) Sender -> Receiver: message

- Meaning that Sender sends message to Receiver
ii) Actor: program
- Meaning that Actor executes program
- A program is defined using pseudo-code, e.g.
-if-then-else
- z := v with condition
- User is authenticated
-Sender -> Receiver: message (conditional statements)
([conditional] assignments)
(English statements) (sending message)
- "message for user"

ONT INIE I OCIN DTND EXAMPLE (ELEMENTS)
 We have 3 actors in this

 protocol: User, PC and Server.English statement

1. User -> PC: I want to login at http://server.com/
2. PC $->$ User: "Enter user id and password"
3. User -> PC: <uid, pwd>

Sending pairs
4. PC -> Server: <uid, pwd>
5. Server: if pwd = db_pwd(uid)
then Deem uid authenticated English statement
Server $->$ PC: res with res $=\mathrm{OK}$ Conditional assignment
else Server \rightarrow PC: res with res = INCORRECT_PWD
6. PC: if res then PC else PC

It is important to always define the elements of the protocol before writing the protocol: Actors, variables, functions, NO datasets, etc, ...

Don't panic about details in defining programs. Simply be rigorous in the definition.

MAN-IN-THE-MIDDLE ATTACKS

MAN-IN-THE-MIDDLE ATTACKS EXAMPLES
\qquad

3. User -> PC: <uid, pwd>

By default we impose no assumptions on communication channels.
Attackers can read the information being transmitted.
4. PC -> Server: <uid, pwd>
5. Server: if pwa
then Deem uid autherाtroun Example 2: Network communication
Server -> PC: res with res else Server -> PC: res with res
6. PC: if res $=$ OK

then PC -> User: "logged-in correctly"
else PC -> User: "Incorrect username/password"

MAN-IN-THE-MIDDLE ATTACKS SOLUTIONS

Example 2: Network communication

By default we impose no assumptions on communication channels.

Attackers can read the information

 being transmitted.What to do? We can specify secure communication via cryptosystems. (Topic of the next two lectures.)

SOMETHING YOU HAVE

TOKENS

TOKEN TYPE SELECTION FACTORS

- Form Factor
- Convenience for end users
- Computational Capabilities
- Computationally capable devices may perform complex tasks
- Cryptographic operations
- Economics
- Typically cheaper devices are easier to attack

ONE-TIME PASSWORDS

- Many tokens simply produce one-time passwords
- Password may be used only once
- Attackers cannot predict future passwords from old ones

ONE-TIME PASSWORDS

- Consider a User (U), Token (T) and a system (S)
- At enrollment T is given a secret $\left(\mathrm{s}_{\mathrm{T}}\right)$ and S keeps a local copy secret (s_{S})
- S contains a set of enrolled users and their corresponding secrets (denoted as Users)
- db_secrets (id ${ }_{U}$) returns the secret stored by the server for $i d_{U}$
- Both the server and the token can compute a hash function $h(r \mid \| s)$ where r is a random nonce and s a secret

1. U -> T: I want to authenticate
2. T-> $S: i d_{u}$

The operation | means concatenate
3. $S:$ if $<i d_{U}, S_{T}>\in U s e r s$
then $S->T: r$ where r is unpredictable, e.g., random nonce
4. T-> $S: t$ with $t=h\left(r| | S_{T}\right)$
5. $S:$ if $t=h\left(r| | S_{S}\right)$
then T is authenticated

TOKEN AUTH: DIGITAL SIGNATURES

- Consider a User (U), Token (T) and a system (S)
- At enrollment T generates a secret key $\left(S_{T}\right)$ and a public key $\left(p_{T}\right)$ accessible by S
- S contains a set of enrolled users and their corresponding secrets (denoted as Users)
- db_secrets (id ${ }_{U}$) returns the secret stored by the server for id d_{u}
- Both the server and the token can compute a hash function $h(r|\mid s)$ where r is a random nonce and s a secret

1. U -> T: I want to authenticate
2. T -> S: idu
3. $\mathrm{S}:$ if $\left\langle i d_{U}, S_{T}\right\rangle \in$ Users
then S-> T: r where r is unpredietable, c.g., randem nonce
4. T-> $S: t$ with $t=\operatorname{sign}\left(r, S_{T}\right)$
5. $S:$ if verify (t, r, p_{T}) then T is authenticated

Computationally expensive, not implementable in all devices, e.g., plastic cards

THEFT

- What if the user's token is stolen?

MULTI-FACTOR AUTHENTICATION

- In order to avoid attacks it is advisable to combine more than one authentication method
- Principle of Defense in Depth
- Require users to enter a PIN
- Require user to enter a code sent to her email
- Email must have been registered during enrollment

ONE-TIME PASSWORD WITH MULTIFACTOR

- Consider a User (U), Token (T) and a system (S)
- At enrollment:
- T is given a secret $\left(\mathrm{s}_{\mathrm{T}}\right)$ and S keeps a corresponding secret $\left(\mathrm{s}_{\mathrm{S}}\right)$
- U chooses a PIN that is hashed and stored in \mathbb{T} (hpin ${ }_{\mathbb{T}}$)
- Assumption: the PIN is stored in a tamper proof manner
- S contains a set of enrolled Users (Users)
- Both the server and the token can compute a hash function h(r \| s) where r is a random nonce and s a secret

ONE-TIME PASSWORD WITH MULTI-FACTOR AUTHENTICATION

1. U -> T: I want to authenticate
2. T -> U: "Enter PIN"
3. U -> $T:$ pin $_{u}$
4. $\mathrm{T}: \mathrm{if} \mathrm{h}\left(\mathrm{pin}_{\mathrm{U}}\right)=\mathrm{hpin} \mathrm{T}_{\mathrm{T}}$ then T-> S : $i d_{v}$
else T -> U: "Incorrect PIN"
5. S: if $\left\langle\mathrm{id}_{\mathrm{U}}, \mathrm{S}_{\mathrm{P}}\right\rangle \in$ Users
then S-> T : r where r is unpredictable, e.g., random nonce
6. T-> $S: t=h\left(r| | S_{T}\right)$
7. S: if $t=h\left(r| | s_{s}\right)$
then T is authenticated

EXAMPLE: ITU'S ACCESS CARD - GYM

\qquad

1. $U \rightarrow R$: id_{U} // by showing the card nearby the card reader
2. $R->S: i d_{U}$, room
3. S: if <id ${ }_{U}$, room> \in RoomAccess and room $=G Y M$
then S-> R: res with res = pin_required
else S-> R: res with res $=$ not_registered
4. R: if res = pin_required
then $R \rightarrow U$: Show blinking orange light // meaning "enter pin"
else $R->U$: Show red light
5. U -> R: pin ${ }_{U}$
6. $R->S: i_{U}$
7. S: if pin $=d b _p i n s\left(i d_{U}\right)$
then $S \rightarrow R$: Show green light and open door
else $S \rightarrow R$: Show red light

SOMETHING YOU ARE

BIOMETRICS

- Humans identify each other by means of biometrics
- Physical traits
- Behaviour
- Voice
\bigcirc
- Police often uses fingerprints to locate suspects on a crime scene
- Some of them useful for authentication

REQUIREMENTS

- In order for biometrics to be useful for authentication they must comply with the following requirements.
- Uniqueness
- Small variation over time
- Easy to measure
- Difficult to spoof
- Acceptable for users
- Biometrics are personal data, in some cases very sensitive

FINGERPRINTS

- Characterised by minutiae
- Features of the raised ridges that appear in the skin on human fingertips
- Fingerprint readers are cheap
- Included in phones
- Laptops
- Can be spoofed, since do not implement liveness tests
- Finger must be placed on the reader
- Short distance

FACES

- Based on absolute proportions and specific features of faces
- Different approaches
- Image processing looks for specific facial features
- Statistical learning (e.g., neural networks) that have been trained to match faces
- Measurement can be done in distance

EYES

- Iris
- It is based on the pattern of pigments in the ring of coloured tissue that surrounds the pupil
- It stabilizes after a person has reached adolescence
- Measurement can be performed around half a meter away
- Retina
- Unique pattern of veins can be found
- Requires individual to focus on a point for some seconds
- Typically consider uncomfortable by individuals

HANDS

- A sensor measures
- Palm, length, width, thickness.
- Images reduces from (e.g.) 31000 points to 90 measurements then to 9 bytes of data
- High resilience to scars, ridges or tattoos
- But rings, bandages or gloves lead to errors

BIOMETRICS LESS LIKELY TO BE USED

- Handwritten signatures
- Too much variation
- Voice
- Voice changes very often due to, e.g., colds or sore throats
- Background noise may affect as well
- Body odor
- We haven't reached dog level smelling :)
- Good sensors do not exist
- Brain waves
- Attacker may spoof targets by becoming familiar with similar images

ACCURACY

- False accept
- Authenticate individual with wrong identity
- False reject
- Fail to authenticate individual with right identity
- Detection Error Trade off (DET)
- In a military base it is better to increase accuracy even if it increases false rejects
- A false accept can be catastrophic
- In a golf club it might be better to minimize false rejects
- The reputation of the club might be affected by rejecting a member

Detection Error Trade-off (DET)

BIOMETRICS: ENROLLMENT

- In order for biometrics to be used for authentication, the authentication system stores a template
- A template is data that can be used to verify your biometrics during authentication
- Fingerprint
- Facial features
- Iris and retina features
- Hand geometry
- The template may contain highly sensitive information

PRIVACY PITFALLS OF AUTHENTICATION

PRIVACY CONCERNS

- Authentication requires that the authentication system to learns the identity of an individual
- Remember, identity is defined as a set of attributes
- As seen earlier, some of these attributes may be sensitive
- Privacy
- Individual's right to determine by herself how data must be handled
- To whom it can be communicated
- For which purposes it might be used
- For long it can be stored or used

PRIVACY CONCERNS

- Individuals may not want to disclosed sensitive attributes
- Such as biometric data
- Individuals may not want their identity to be bounded to an action
- Accessing a room
- Buying an item
- Some attributes may be analyzed to learn infer others
- Electrocardiogram (ECG) information may reveal underlying health conditions
- Aggregating identifiers may lead to disclosure of sensitive data

GUIDELINES TO PREVENT PRIVACY PITFALLS

- Seek Consent
- Authentication must only be carried out after the principal giving explicit consent
- Select Minimal Identity
- Collect identities which require minimum amount of attributes
- Limit Storage
- Do not save authentication information unless it is necessary
- Avoid Linking
- Do not reuse identifiers for identities in different systems

SIMILAR TO GDPR

- Seek Consent (Explicit consent)
- Authentication must only be carried out after the principal giving explicit consent
- Select Minimal Identity (Data minimisation)
- Collect identities which require minimum amount of attributes
- Limit Storage (Data minimisation + purpose of usage)
- Do not save authentication information unless it is necessary
- Avoid Linking (purpose of usage)
- Do not reuse identifiers for identities in different systems

RFID CHIPS

- Constantly ready for authentication
- Attacker may place an authentication device nearby
- No notification
- Individuals may be unexpectedly authenticated as no notification is provided after being authenticated
- Thus, RFID alone violate the seek consent guideline
- There exist some solutions
- E.g., US passports have a cover of foil which creates a Faraday cage when being closed
- Opening the password is interpreted as giving consent for being authenticated

HEARTBEAT AUTHENTICATION

- Template information may be correlated to health state
- In conflict with limit data storage
- Attributes contain additional information which is irrelevant for authentication
- Additional risk (not proven, MSc thesis topic):
- Electrocardiogram information may be synthesized from old samples

- E.g., fitbit, garmin, strava workout data
- These companies could impersonate individuals

SUMMARY

- Identities
- Identification vs Authentication
- Protocol Design (important for assignments and exercises)
- Authentication Methods
- Something you know
- Something you have
- Something you are
- Privacy Pitfalls

ACKNOWLEDGEMENTS

- Michael's Clarkson slides on human authentication, passwords and tokens have inspired some parts of this lecture

