
Security Engineering

Applied Information Security
Summer 2021, Lecture 5

Course so far

attackers

● mindset, phases, attacks.
○ recon/scan/access ← tools for this

sys-admins

● isolation firewalls, containers, VMs
● audit intrusion detection,

vulnerability scan, antivirus, …

Course so far

attackers

● mindset, phases, attacks.
○ recon/scan/access ← tools for this

sys-admins

● isolation firewalls, containers, VMs
● audit intrusion detection,

vulnerability scan, antivirus, …

security is application-specific (which ops are OK?).
how to specify & enforce app-specific security concerns?

(great, but)

often not possible (sharing),
often cumbersome

(great, but)

what is good/bad behavior?
security “too late”

Course so far

attackers

● mindset, phases, attacks.
○ recon/scan/access ← tools for this

sys-admins

● isolation firewalls, containers, VMs
● audit intrusion detection,

vulnerability scan, antivirus, …

security is application-specific (which ops are OK?).
how to specify & enforce app-specific security concerns?

(great, but)

often not possible (sharing),
often cumbersome

(great, but)

what is good/bad behavior?
security “too late”

spoiler:

we don’t know!

story time, courtesy of Butler Lampson

Why is it hard?

in the beginning: security = physical isolation. 1950-1963

bring data, control machine, take everything away. Easy

time-sharing brought security dilemma: isolation vs. sharing 1963-1982

each user wants private machine, isolated from others.
users want to share data, programs, resources. Hard

since then, things have only gotten worse 1982-today

less isolation, more sharing, no central management, more valuable data,
continued misguided search for perfect security, ...

Why is it hard? - disparity
System

V1 V2 V3 V4

V5 V6 V7 ...
P1 P2

P3

P4

Security Engineer Attacker

security engineer must protect
against all vulnerabilities.

attackers only need to exploit one
vulnerability to succeed.

A1 A2
A3

A7

virtually impossible. vulnerabilities might not even be known.

Where we stand

What we can do
● secure something simple very well
● protect complexity (isolation, sanitize)
● stage security theater :-P

What we can’t do
● make something complex secure
● make something big secure

(if not isolated)
● keep something secure when it changes
● get users to make judgements

about security
● understand privacy

we have learned a lot of valuable lessons & tricks, though.
those are the focus of today!

Today

wisdom of the sages (through the ages).

● security principles best practises

● security mechanisms technical solutions

● security requirements how to specify good behavior

● security evaluation expectations (by gov/ind.)

Security
Principles

Guidelines; Stood the Test of Time

Principles
● Complete Mediation
● Failsafe Defaults
● Least Privilege
● Separation of Privilege
● Open Design
● Defense in Depth
● Psychological Acceptability
● Isolation
● Minimum Exposure
● Least Common Mechanism
● Accountability

Common Theme
● separation
● redundancy
● simplicity
● completeness

Source
● Saltzer & Schroder 1975
● Butler W. Lampson
● Fred B. Schneider

Principles

not an
exhaustive list

make note!

Complete
Mediation
monitor and control
every operation to

every object by
 every principal.

intercept the action (e.g. access, write),
determine if operation wrt. policy.

implications:

● system-wide access control
● fool-proof way to ID source of req.
● restrictions on caching

primary underpinning of protection.

Principles

Complete
Mediation
monitor and control
every operation to

every object by
 every principal.

Maginot-line: Strong fortifications
didn’t extend all the way (WW2).

Principles

Complete
Mediation
monitor and control
every operation to

every object by
 every principal.

UNIX mediates all file system access;
process tries to read a file
⇒ kernel decides if process is allowed.

Principles

Complete
Mediation
monitor and control
every operation to

every object by
 every principal.

… unless accessed physically
(physical access bypasses the kernel)
(countermeasure: disk encryption).

Principles

Failsafe
Defaults

access should be denied
by default, and only granted
explicitly (by mechanism).

example: mail server cannot create file
in /var/spool. store elsewhere?

attacker can read the mail there.
attacker can fill more hard drives (DoS).
attacker can get root (privilege escalation).

example: access card system down.
grant card-bearers access?

heist of 500 engine parts from a
German car manufacturer

Principles

Failsafe
Defaults

access should be denied
by default, and only granted
explicitly (by mechanism).

example: mail server cannot create file
in /var/spool. store elsewhere?

attacker can read the mail there.
attacker can fill more hard drives (DoS).
attacker can get root (privilege escalation).

example: access card system down.
grant card-bearers access?

heist of 500 engine parts from a
German car manufacturer

Principles

Failsafe
Defaults

access should be denied
by default, and only granted
explicitly (by mechanism).

example: mail server cannot create file
in /var/spool. store elsewhere?

attacker can read the mail there.
attacker can fill more hard drives (DoS).
attacker can get root (privilege escalation).

example: access card system down.
grant card-bearers access?

heist of 500 engine parts from a
German car manufacturer

Principles

Failsafe
Defaults

access should be denied
by default, and only granted
explicitly (by mechanism).

example: browsers & TLS

machine does not want to talk to you
in a manner you’re happy with (TLS 2)?
don’t talk to them insecurely;
just don’t talk to them.

Principles

Failsafe
Defaults

access should be denied
by default, and only granted
explicitly (by mechanism).

example: Android runtime permissions

denies access by default.
requires explicit permission from users.

Principles

more a
safe default
than a
failsafe default

Least
Privilege

principals should operate with
least set of privileges

needed to complete operation

does it really need to run as root?

● computer game?
● PDF viewer?
● WinZIP?

Principles

Would you hit
“Continue”?

limits damage / malice resulting from
improper use of privilege less likely.

● justifies “need to know”.

UNIX: my process does not have root
⇒ it can only only leak / destroy
 my files (not whole sys, other users)
 if it “goes rogue”.

Least
Privilege

principals should operate with
least set of privileges

needed to complete operation

Principles

Separation of
Privilege

different operations require
different privileges.

split program into separate processes
with their own privileges.

● one process compromised ⇒
less damage (e.g. just a DoS)

● communication between parts
goes through OS ⇒ security check

major feature of OpenBSD

Principles

Open
Design

security should not depend on
the protection mechanism

being secret

Principles Kerckhoff’s Principle, 1883:

“security through obscurity” bad idea.

● don’t depend on attacker ignorance
hard to control what they know
(dumpster dive, phish, reverse engineer, ...)
93% of modern Web App code is OS libs...

● depend on possession of keys/passwd
easy to protect

even if attacker knows algorithms,
we still have assurance.

Economy of
Mechanism
mechanism must be as

simple as possible.

complex design ⇒ complex failures

simpler security mechanism ⇒

● fewer errors
● smaller TCB

Principles

Defense
in Depth

use a set of
independent and overlapping

mechanisms,
instead of a single mechanism

no single point of failure

no single mechanism resist all attacks.

● separation of duty
● redundancy:

no single point of failure

example: ATM (card + password)

example: e-mail (firewall + sandbox)

Principles

Defense
in Depth

use a set of
independent and overlapping

mechanisms,
instead of a single mechanism

no single point of failure

Principles

example: two-factor authentication

Psychological
Acceptability

mechanism must not make
resources more difficult use

than if mechanism not present

security must be usable (else circumvented)

Principles

How many of you
would just hit
“agree” (Enig)?

Isolation
organize resources into

isolated groups of similar needs

A & B don’t need to communicate?
don’t enable them to communicate.

● contain failure

Principles

mechanism that
implements this

principle:
firewall, VM, …

Would you hit
“ACCEPT”?

Isolation
organize resources into

isolated groups of similar needs

A & B don’t need to communicate?
don’t enable them to communicate.

● contain failure

Principles

mechanism that
implements this

principle:
firewall, VM, …

example: browser. sandboxed; tabs
cannot interact, JS can’t access disk

example: don’t run your IDE, browser,
etc. on the server that hosts your
company’s valued database.

example: in fact, don’t make that
server directly reachable from
the Internet.

Minimum
Exposure

minimize attack surface that
the system presents to attacker

reduce external interface.
don’t need it? turn it off!

service on a port,
device on the network, …

the less SW you run, the safer you are.

The

Principles

think
IoT

Least Common
Mechanism

means of
accessing a resource
should not be shared

sharing may lead to vulnerabilities.

● hardware
● OS/software
● mechanism

example: DoS attack on PayPal ⇒
companies can’t be paid
(PayPal shared by companies & attacker)

Principles

Accountability
hold principals

legally responsible
for their actions.

we can’t achieve perfect security yet.

alternative: accountability

● values
● locks
● punishment

complementary; disincentivize attacks.

Principles

mechanism that
implements this principle:

logging, intrusion detection.

Security
Mechanisms

basic mechanisms

Mechanisms

for implementing security

Gold Standard
Butler W. Lampson,
Turing Award winner 1992

authenticate principals

● “Who said that?”
● “Who is getting that information?”

authorize access

● “Who can do which operation
 on which object?”

audit decision of guard

● “What happened? Why?”
Not always an option! (Voting)

Mechanisms

Authenticate

determine whom you are to the system.

● identification
○ indicate identity (from observed attributes)
○ example: surveillance cameras

looking for an individual in a crowd

● authentication
○ verify identity (proof)
○ example: a security officer

at border control verifying that
a passport belongs to its bearer

Examples of proof: password, token, fingerprint

Mechanisms - Gold Standard

Authorize: Access Control

Guard decides if principal is allowed to do operation on object.

authentication: identify the principal who made the request.

authorization: who can do this operation on that object?

why separate guard from object: simplicity. (smaller TCB).

Mechanisms - Gold Standard

Authorize: Information-Flow Control

Guard decides if information can flow to principal.

authentication: identify the principal who receives the information.

authorization: who can receive this information?

Mechanisms - Gold Standard

Auditing

security log: security-relevant event

● access, authentication failure, etc.
● provides audit trail.

provenance: full program behavior

● detect anomalous behavior

intrusion detection: monitor network or system for policy violations

Mechanisms - Gold Standard

techniques

Mechanisms

for implementing gold standard

Cryptography
scramble data, so original data can
only be read if you possess the key.

facilitates secure communication
over untrusted medium (e.g. Internet).

● confidentiality (encryption)
● integrity (signature)

Mechanisms

Program
Analysis

scan the code w/o running it,
to determine if it e.g.

● has vulnerabilities
● satisfies security requirements

(think “linters”, “type systems”, etc.)

example: SpotBugs for Java
(exercise session)

Mechanisms

Monitors
Fred B. Schneider

extensive work on monitors

monitor interface I/O. halt execution
before damage is done.

what’s needed:

● policy: which I/O is okay
● monitor: receives control upon I/O
● ability to block program

white/black-box, inlined, ...

Mechanisms

Isolation

restrict / prevent communication.

process: executes in its own address
space. access to shared resources.

sandbox: provides “shadow copy” in
response to request to environment.

virtual machine: computer simulated in
software. limited access to host.

firewall: pass certain traffic through.

Mechanisms

A Caveat

“Isolation plays the same role in computer security as did the tall, imposing
 perimeter walls in protecting a medieval city from marauders. [...] Note the
 tension between defending the city, & promoting daily activities of citizens”

- Fred B. Schneider

when useful:

● little pressure to puncture boundaries
● communication that does cross boundary is limited & carefully prescribed.

Mechanisms - Isolation

isolation vs.
security

Logging

What to log: events, e.g.

● login
● access to protected resource,
● elevation of privileges, ...

which events? security-relevant ones.

what to put in the log entry?

● what check was made,
● outcome
● information that lead to

that decision.

facilitates auditing

Mechanisms actions; how
system came to be

Security
Requirements

System-Specific Security Requirements

security a system is secure iff it does what it should, and nothing more.

engineering methodology to arrive at security requirements:

1. functional requirements
2. threat analysis
3. harm analysis
4. security goals
5. feasibility analysis
6. security requirements

finally, look at existing methodologies (aka. threat modeling methodologies)

what should the system do?

Requirements

functional
 requirements

Requirements

Rules of Thumb

functional requirement: specification
 of behavior, between outputs & inputs
 of system (or component).

we start with
functional requirements

we end with
security requirements

both expected to satisfy.
today: how to arrive at these.

Requirements - Functional Requirements

User Story

brief description of single kind of
interaction user can have w/ system

format:

“as a [user],
 I can [action]
 so that [benefit].”

user stories reveal system assets.

goal

reason,
value

Requirements - Functional Requirements

Example User Story

Example (course CMS)

● “As a professor, I can create a new assignment by specifying its name,
possible grades, and due date.”

● “As a student, I can submit a file as a solution to an assignment.”

Requirements - Functional Requirements - User Story

Example User Story

Example (course CMS)

● “As a professor, I can create a new assignment by specifying its name,
possible grades, and due date.”

● “As a student, I can submit a file as a solution to an assignment.”

Requirements - Functional Requirements - User Story

asset

asset

threat
 analysis

Requirements

Rules of Thumb

identify threats of concern to system

● especially malicious, human threats
● what kinds of attackers will system resist?
● what are their motivations? resources? capabilities?

best if analysis is specific to system and its functionality

non threats:

● trusted hardware, trusted environment
e.g., physically secured machine room reachable only by trustworthy system operators

Requirements - Threat Analysis

harm
 analysis

Requirements

Rules of Thumb

harm: action adversely affects value of asset.

harm to…

● confidentiality: disclosure
● integrity: modification or fabrication
● availability: deprivation / loss-of-use

format:

● “Performing [action] { on, to, with } [asset] could cause [harm].”
e.g., "stealing money could cause loss of revenue"
e.g., "erasing account balances could cause loss of customers"

Requirements - Harm Analysis

Harm Triples

⟨ action, asset, harm ⟩

examples:

● ⟨theft, money, lose revenue⟩
● ⟨erasure, account balance, lose customer⟩

methodology:

● start with an asset
● brainstorm actions that could

harm that asset

let brainstorming be guided by CIA

Requirements - Harm Analysis

Example: Harm Triples

Grade Management System (GMS). Manages just the final grade for one course.

functional requirements:

● “as a student, I can view my final grade.”
● “as a professor, I can view and change final grades for all students.”
● “as an administrator, I can add/remove students/professors to/from

course.”

Requirements

Example: Harm Triples

Grade Management System (GMS). Manages just the final grade for one course.

functional requirements:

● “as a student, I can view my final grade.”
● “as a professor, I can view and change final grades for all students.”
● “as an administrator, I can add/remove students/professors to/from

course.”

asset

Requirements

Example: Harm Triples

Grade Management System (GMS). Manages just the final grade for one course.

threat analysis:

● students:
○ motivations: increase their own grade, lower others' grades, learn others' grades
○ capabilities: network access to servers, some physical access to others' computers,

social engineering; probably not extensive computational or financial resources

● out of scope:
○ assume that threats cannot physically access any servers
○ professors are trusted, system admins are trusted

Requirements

Example: Harm Triples

Grade Management System (GMS). Manages just the final grade for one course.

asset: grade for each student.
functional requirement: students view grade, profs view/change grade,

admins manage enrollment
threat analysis: malicious/curious students.

professors trusted. no physical access.
in class exercise:
harm analysis: “Performing [action] { on, to, with } [asset] could cause [harm].”

⟨ action, asset, harm ⟩ ← invent some!

Requirements

Example: Harm Triples

Grade Management System (GMS). Manages just the final grade for one course.

asset: grade for each student.
functional requirement: students view grade, profs view/change grade,

admins manage enrollment
threat analysis: malicious/curious students.

professors trusted. no physical access.
in class exercise:
harm analysis: “Performing [action] { on, to, with } [asset] could cause [harm].”

⟨ disclosure, grade, embarrassment / loss of employability ⟩ ← confid.
⟨ overwriting, grade, GPA is lowered ⟩ ← integrity
⟨ spam-request, grade, grade is unviewable ⟩ ← availability

Requirements

security
 goals

Requirements

Security Policy

security a system is secure iff it

● does what it should,
● and nothing more.

policy stipulates what should and
should not be done.

format “The system shall
 { prevent, detect } [action]
 { on, to, with } [asset].”

how turn ⟨ action, asset, harm ⟩
into above format.

Requirements - Security Goals

also known as:

Examples

format “The system shall { prevent, detect } [action] { on, to, with } [asset].”
how turn ⟨ action, asset, harm ⟩ into above format.

● specify what. examples (good)
"The system shall prevent theft of money"
"The system shall prevent erasure of account balances"

● not how (that’s for requirements & countermeasures). examples (bad)
"the system shall use encryption to prevent reading of messages"
"the system shall use authentication to verify user identities”, "the system shall resist attack”

in-class exercise: security goals for the Grade Management System (GMS)

Requirements - Security Goals - Policy

Examples

format “The system shall { prevent, detect } [action] { on, to, with } [asset].”
how turn ⟨ action, asset, harm ⟩ into above format.

● specify what. examples (good)
"The system shall prevent theft of money"
"The system shall prevent erasure of account balances"

● not how (that’s for requirements & countermeasures). examples (bad)
"the system shall use encryption to prevent reading of messages"
"the system shall use authentication to verify user identities”, "the system shall resist attack”

Requirements - Security Goals - Policy

“The system shall prevent disclosure of grade (by those unprivileged to see it)”
“The system shall prevent overwriting of grade (by those unprivileged to do so)”
“The system shall detect spamming of requests of grade.”

feasibility
 analysis

Requirements

Compromise

not all goals are feasible to achieve

● impossible
● impractical
● too expensive

relax goals:

● "prevent theft of items from a vault", to
● "resist penetration for 30 minutes", or to
● "detect theft of items from a vault"

Requirements - Feasibility Analysis

security
 requirements

Requirements

From Goals to Requirements

why not satisfied with security goals?

goals: what should never happen in any situation ← not testable

requirement: what should happen in specific situations ← testable!

security requirements: constraint on functional requirements,
 in service of security goals.

Requirements - Security Requirements

Goals vs. Requirements

goals requirements

broad scope narrow scope

apply to system apply to individual functional requirements

state desires state constraints

not testable testable

not about design/implementation details provide some details

Requirements - Security Requirements

Examples

security requirements: constraint on functional requirements, in service of security goals.

example
functional requirement: allow people to cash checks
security goal: prevent loss of revenue through bad checks
security requirement: check must be drawn on bank where it's being cashed (so funds can be verified),
or customer must be account holder at bank & depositing funds in account (so funds could be reversed)

example
functional requirement: allow two users to chat using IM
security goal: prevent disclosure of message contents to other users
security requirement: contents of message cannot be read by anyone other than the two users
security requirement: message is encrypted by key shared with the two users

 - better; doesn't over-commit to encryption algorithm, key size, etc.

Requirements - Security Requirements

Exercise

security goal: “The system shall { prevent, detect } [action] { on, to, with } [asset].”
security requirements: constraint on functional requirements, in service of security goals.

In-class:

functional requirements: students view grades, profs view and change grades,
admins manage enrollment

security goals: “The system shall prevent disclosure of grade (by those unprivileged to see it)”
“The system shall prevent overwriting of grade (by those unprivileged to do so)”
“The system shall detect spamming of requests of grade.”

security requirements: combine functional requirements with
goals to invent constraints on system

Security Requirements

Exercise

security goal: “The system shall { prevent, detect } [action] { on, to, with } [asset].”
security requirements: constraint on functional requirements, in service of security goals.

In-class:

functional requirements: students view grades, profs view and change grades,
admins manage enrollment

security goals: “The system shall prevent disclosure of grade (by those unprivileged to see it)”
“The system shall prevent overwriting of grade (by those unprivileged to do so)”
“The system shall detect spamming of requests of grade.”

security requirements: grade can only be read by professor, and student it belongs to.
grade can only be written by professor.
spamming of requests for grades must be logged and notified to admins.

Security Requirements

Summary

methodology to arrive at security requirements.

1. functional requirements
2. threat analysis
3. harm analysis
4. security goals
5. feasibility analysis
6. security requirements

when do to this: from beginning of project (!!!)
security should be at the core of your design.
this is threat modeling. some steps hard (e.g. step 3). existing methodologies?

threat
 modeling

Requirements

Let’s Look at Older Approaches

we’ve seen asset- and attacker-centric threat modeling

● during software development,
● operate on user stories, modify functional requirements

system-centric: understand threats to an existing system

● recon
● predict
● categorize

spoiler: some useful ideas... but not compatible w/ modern SW development.

Requirements - Threat Modeling Methodologies

Diagrams

start with diagrams, to understand

● where data flows in and out
● where data is processed
● trust boundaries

good diagrams for this:

● UML diagrams
(structural & behavioral)

● Data Flow Diagrams

Requirements - Threat Modeling Methodologies

recon:

Log
Analysis

Data Flow Diagram (DFD) (web application)

Users

WebAdmins

Application
Front-End

WebServer
Logic

Authentication

Credentials Data Logs

Database
System

DPA

Requirements - Threat Modeling Methodologies - Diagrams
database
performance
analyzer

Log
Analysis

Data Flow Diagram (DFD) (web application)

Users

WebAdmins

Application
Front-End

WebServer
Logic

Authentication

Credentials Data Logs

Database
System

DPA

Database

Web App

Requirements - Threat Modeling Methodologies - Diagrams

trust boundaries
put’em between
components that
interact
(note: only cross
 data flows)

Attack Trees

then, conjure up attack scenarios.
structured approach: attack trees.

● nodes represent attacks
○ root-node: global goal of an attacker

○ child-node: refinements of this goal

○ leaf-node: un-refineable attack

● child connectives
○ OR: possible refinements

○ AND: necessary refinements

Requirements - Threat Modeling Methodologies

predict:

Attack Tree, Example

Open a Safe

Pick Lock Install
improperly

Listen to
conversation

Get target to
state combo

Learn
Combo

Cut Open
Safe

Find written
combo

Learn combo
from target

Threaten BribeBlack mail Eavesdrop

Requirements - Threat Modeling Methodologies - Attack Trees

Attack Tree, Example, Annotate w/ Attributes

Open a Safe

Pick Lock Install
improperly

Listen to
conversation

Get target to
state combo

Learn
Combo

Cut Open
Safe

Find written
combo

Learn combo
from target

Threaten BribeBlack mail Eavesdrop

I I

I

I I I

IP

P

P

P

P

P

What are the possible attacks?

Requirements - Threat Modeling Methodologies - Attack Trees

Attack Tree, Example, Annotate w/ Attributes

Open a Safe

Pick Lock Install
improperly

Listen to
conversation

Get target to
state combo

Learn
Combo

Cut Open
Safe

Find written
combo

Learn combo
from target

Threaten BribeBlack mail Eavesdrop

30 90

75

60 80

4020

20

10

What is the cheapest attack?

60

{60, 80, 20}

{75, 60, 80, 20}

{30, 75, 60, 80, 20, 10, 90}

Requirements - Threat Modeling Methodologies - Attack Trees

Further Tips

Textual Representation
Goal: Open Safe

1. Pick lock (OR)
2. Learn combo (OR)

2.1. Find written combo (OR)
2.2. Get combo from target (OR)

2.2.1. Threaten (OR)
2.2.2. Black mail (OR)
2.2.3. Eavesdrop (OR)

2.2.3.1. Listen to conversation (AND)
2.2.3.2. Get target to state combo

2.2.4. Bribe
3. Cut Open Safe (OR)
4. Install Improperly

How To Make Attack Trees
● identify possible goals

○ each goal forms separate tree,
rooted in higher goal

● continue iterating until you reach all leaves
○ good to involve lots of people

● trees can be reused, as part of larger tree
○ compartmentalization

Theory, Tools
There’s a theory, and tools (ADTool)

Requirements - Threat Modeling Methodologies - Attack Trees

STRIDE

finally, categorize the attacks

STRIDE: a way to categorize attacks.
(that’s all it is). categories:

● spoofing
● tampering
● repudiation
● information disclosure
● denial of service
● elevation of privilege

decent overview of possible attacks.
informs design of countermeasures.

Requirements - Threat Modeling Methodologies

categorize:

Closing

when to stop threat modeling:

● attack per category
● attack per element in model

Lots of opportunity to re-use kinds of
attacks...

Microsoft Threat Modeling Tool

Requirements - Threat Modeling Methodologies

Criticism

this threat modeling approach is from
the early 2000s.

software development has transformed
a lot since then.

push to deliver releases faster (CI/CD).
security considered a hurdle/hindrance.
diagrams are left out.

creating diagrams is costly.
business people don’t understand them.

waterfall

agile

DevOps

Requirements - Threat Modeling Methodologies

Criticism - What to do?

Threat Modeling in DevOps?
focus on user stories.
understand things in terms of business assets.

what makes a difference to a business?

● private data
● financial assets

threats

● theft
● fraud

Requirements - Threat Modeling Methodologies

● critical functions
● people assets
● trade secrets

● exposed data
● interrupted business

What Developer Does
implement three types of controls, per threat:

detection controls enable your code in that user
story to detect that type of threat. (e.g. logging)

mitigation controls make attacks slower & more
difficult, so I have time to react to it.

defense controls shut down the attack (e.g.
disable user account).

Diagrams? Attack trees? STRIDE? All gone.

Criticism

“there is no single best or correct way of performing threat modeling, it is a
question of trade-offs and what we want to achieve by doing it”

Source: A. Shostack, “Experiences Threat Modeling at Microsoft,” in Modeling Security Workshop, in Association with MODELS’08, 2008.

Requirements - Threat Modeling Methodologies

Evaluation

Assurance

• How do you convince yourself that system is secure?
• How do you convince others??
• Assurance is evidence that system will not fail in particular

ways
– Development process (e.g. formal methods, deliberate fault

injection and discovery)
– Skill of developers
– Experience with deployed system

• Evaluation is process of establishing assurance
– developers
– QA teams
– third party labs

Economics is against us

• Companies race to ship innovative product
sooner than competitors
– Little security
– Wrong security

• Later security is “bolted on” as additional
features
– But incentive is to lock in customers
– Product is already deployed; too late for major design

changes that might be necessary

Build security in

• Integrate security functionality from the beginning
of development
– During requirements engineering
– During system design
– During testing

• Accumulate evidence of security as development
proceeds
– Documentation
– Analysis: by humans, by machines
– Test suites

Orange Book evaluation

Orange Book evaluation

• Used approx. 1985-2000 for US government systems
• http://csrc.nist.gov/publications/history/dod85.pdf
• Evaluation classes (selected traits):
– D: meets no higher requirements
– C1: DAC & authentication (but maybe not at the level of

individual users), TCB with integrity verification, security
testing, documentation of security
features/testing/design

– C2: improved DAC (at the level of single users, failsafe
defaults, limits on propagation), audit (of specified
security relevant events and details of those events)
• IBM mainframes and Windows NT got this certification

Orange Book evaluation

• Evaluation classes, continued:
– B1: informal security policies, mandatory access

control (multilevel security)
– B2: formal security policies, clearly defined TCB,

covert channel analysis
– B3: minimal TCB with complete mediation,

automated intrusion detection
– A1: formal verification of design

• only a handful of systems ever achieved this level

Legacy of Orange Book

• Evaluation didn't succeed in commercial market
– Too costly; costs diverted to government and customers
– Too long to get evaluated (>1 year) compared to short

product cycles
• Raised awareness of security for vendors and government

– Major operating systems did incorporate discretionary access
control; would that have happened without evaluation?

– But few systems ever incorporated the multilevel security the
US DoD wanted

• Unpopular security features mandated by higher levels
– Research still ongoing on how to make such features usable

• Led to international standards for evaluation...

Common Criteria (CC)

• Evolved in the 1990s out of criteria in Europe,
Canada, and US

• Different evaluation model:
– Define protection profile and security target

• think of these as customized security goals/requirements
• e.g., for OS, for smartphone, for VPN client
• not one-size-fits-all like Orange Book

– Increasingly strict evaluation criteria for how well system
meets profile/target

• Evaluation done by independent labs

Protection profile (PP)

• Written for a category of products or systems that meet
specific consumer needs

• Implementation independent
• Security environment:

– assumptions about intended usage
– threats of concern

• Security goals and requirements [using our terminology]
– Hundreds of pages of pre-written proto-requirements:

http://www.commoncriteriaportal.org/files/ccfiles/CCPART2
V3.1R2.pdf

• PP itself can be evaluated (complete, consistent,
technically sound)

Security target (ST)

• Can be based on multiple protection profiles, or
created from scratch

• Customized to a specific Target of Evaluation
(TOE), i.e., product or system

• Argues (provides evidence) how the system
meets the security goals and requirements
– Assurance argument

Evaluation Assurance Level (EAL)

• EAL1: Functionally Tested
– Analysis of specifications, documentation; independent

testing
– Some confidence desired but threat is not serious

• EAL2: Structurally Tested
– Analysis also of high-level design, of developer's testing;

vulnerability analysis
– Low level of assurance, perhaps for legacy systems

• EAL3: Methodically Tested and Checked
– Also requires use of development environment controls

and configuration management

Evaluation Assurance Level (EAL)

• EAL4: Methodically Designed, Tested, and Reviewed
– Also analyze low-level design, some of the implementation;

developers must provide informal model of product or security
policy

– Moderate level of assurance, probably highest likely to achieve for
pre-existing systems

– Common level for commercial OS
• EAL5 through EAL 7

– Increasing demands for formal verification, penetration testing,
independent testing

• Higher EAL does not mean more secure—rather, means
assurance in claimed security is based on stronger evidence

Legacy of Common Criteria

• “When presented with a security product, you
must always consider whether the salesman is
lying or mistaken.” – Ross Anderson

• Is the PP really what you want?
• Is the evaluation facility trustworthy?
– Paid by developer
– Controlled by governments

• What vulnerabilities have been discovered after
evaluation?

Evaluation Assurance Level (EAL)

Source: US government report GAO-06-392, 2006

Summary

Security Engineering - A Lost Cause?

now you know how Security Engineers operate:

● understand security built-in is important
and want it, too

● valuable lessons on writing secure software
principles

● have an idea of what mechanisms exist
to give assurance

● have an idea of standard security expectations
evaluation

we do not know how to do security engineering.
we do our best w/ what we’ve got, to make attacks unaffordable or too risky.

Summary

accountabilitymechanisms

