Hardening

Applied Information Security Lecture 4

Recap: Foreknowledge

Attackers:

• Mindset, Phases

What can be accomplished by an attack:

• Code Injection

Dynamic Evaluation, Insecure Deserialization, XSS, Command Inject, SQL Injection, Buffer Overflow, ...

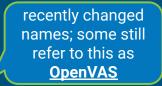
• Side Channels

Hardware, Network, Physical World (airgap), ...

• Social Engineering

(spear)phishing, weapons of influence, dumpster diving, ...

Today's Topics


• detect vulnerabilities

- known
 - vulnerability scan & exploit
- o unknown
 - automatic, manual
- detect attacks
 - ongoing
 - intrusion detection
 - o past
 - auditing, malware removal
- administration
 - hardening, firewall, isolation

Detect Vulnerabilities: Known

Known vulnerabilities; How to find them? How to exploit them?

MITRE CVE, + UI & auto-scan

 scan a specified host for vulnerabilities

Greenbone Vulnerability Manager

gvm

Date	4214630	Task	Severity 🕼	0	Scan Results					
Date	Status	lask	Sevency		High	Mediu		Low	Log	False Pos.
Thu Jan 9 03:05:08 2020	Done	Immediate scan of IP 192.168.11.137	N/A	-		0	0	0		0
Report: Re	sults (312	of 734)						ID: Modifier Created Owner:	d:	0-65d7-45ee-8ca8
Vulnerability					👬 Seve	ity (0 Qol	D Host		Location
rexec Passwordless / Unencry	oted Cleartext Logi	n		1	10	0 (High)	759	6 192.168	8.11.137	512/tcp
Samba End Of Life Detection					10	0 (High)	759	6 192.168	8.11.137	445/tcp
Samba 'TALLOC_FREE()' Function Remote Code Execution Vulnerability			1	10	0 (High)	759	6 192.168	8.11.137	445/tcp	
PHP Multiple Vulnerabilities - Aug08			1	10	0 (High)	759	6 192.168	8.11.137	80/tcp	
PHP Version < 5.2.7 Multiple Vulnerabilities			1	10	0 (High)	759	6 192.168	8.11.137	80/tcp	
PHP End Of Life Detection (Linux)			1	10	0 (High)	759	6 192.168	8.11.137	80/tcp	
MySQL End Of Life Detection (Linux)			1	10	0 (High)	759	6 192.168	8.11.137	3306/tcp	
PostgreSQL End Of Life Detection (Linux)				1	10	0 (High)	759	6 192.168	8.11.137	5432/tcp

msfconsole

Metasploit Framework Console

collection of exploits

- standard format (use, options, run)
- Parameterized (IP address, ...)

for security auditing

msf exploit(multi/handler) > run

[*] Started reverse TCP handler on 192.168.86.223:4444
[*] Sending stage (179779 bytes) to 192.168.86.61
[*] Meterpreter session 1 opened (192.168.86.223:4444 -> 192.168.86.61:49197) at
2018-05-29 11:48:32 -0400

<u>meterpreter</u> > shell Process 3028 created. Channel 1 created. Microsoft Windows [Version 6.1.7601] Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Users\victim\Downloads>

Detect Vulnerabilities: Unknown

No known vulnerabilities; How do we craft new ones?

- automatic
- manual

Automatic

afl, sqlmap

fuzzer

- randomly tweak a given input
- provoke bad behavior

afl

American Fuzzy Lop

used e.g. to find buffer overflows.

american fuzzy lop 1.86b (test)

process timing ————————————————————————————————————	overall results
run time : 0 days, 0 hrs, 0 min,	2 sec cycles done : 0
last new path : none seen yet	total paths : 1
last uniq crash : 0 days, 0 hrs, 0 min,	2 sec uniq crashes : 1
last uniq hang : none seen yet	uniq hangs : 0
— cycle progress ———————————————————————————————————	map coverage
now processing : 0 (0.00%)	map density : 2 (0.00%)
paths timed out : 0 (0.00%)	count coverage : 1.00 bits/tuple
— stage progress —————	findings in depth — — — — — — — — — — — — — — — — — — —
	favored paths : 1 (100.00%)
stage execs : 1464/5000 (29.28%)	new edges on : 1 (100.00%)
total execs : 1697	total crashes : 39 (1 unique)
exec speed : 626.5/sec	total hangs : 0 (0 unique)
— fuzzing strategy yields —————	path geometry
bit flips : 0/16, 1/15, 0/13	levels : 1
byte flips : 0/2, 0/1, 0/0	pending : 1
arithmetics : 0/112, 0/25, 0/0	pend fav : 1
known ints : 0/10, 0/28, 0/0	own finds : O
dictionary : 0/0, 0/0, 0/0	imported : n/a
havoc : 0/0, 0/0	variable : O
trim : n/a, 0.00%	
	[cpu: 92%]

sqlmap

test for SQL injections!

Ħ	{1.3.4.44#dev}
 	
	http://sqlmap.org
s illegal. It is	mer: Usage of sqlmap for attacking targets without prior mutual consent the end user's responsibility to obey all applicable local, state and pers assume no liability and are not responsible for any misuse or dama rogram
[*] starting @ 10	:44:53 /2019-04-30/
[10:44:54] [INFO]	testing connection to the target URL
	heuristics detected web page charset 'ascii'
	checking if the target is protected by some kind of WAF/IPS
	testing if the target URL content is stable target URL content is stable
	testing if GET parameter 'id' is dynamic
[10:44:55] [INFO]	testing if GET parameter 'id' is dynamic GET parameter 'id' appears to be dynamic

Manual

angr, Ghidra (reverse engineer), Burpsuite, ...

binary analysis: concolic execution

- symbolic execution

 (abstract execution traces)
- + testing (to enter each abstract trace)

used e.g. to find buffer overflows.

WARNING 2019-03-20 18:00:01,593 angr.state_plugins.symbolic_memory angr will cope with this by genera WARNING 2019-03-20 18:00:01,593 angr.state_plugins.symbolic_memory 1) setting a value to the initial WARNING 2019-03-20 18:00:01,594 angr.state_plugins.symbolic_memory 2) adding the state option ZERO_F1 WARNING 2019-03-20 18:00:01,594 angr.state_plugins.symbolic_memory 3) adding the state option SYMBOL		<pre>\$ python scaffold00.py angr.state_plugins.symbolic_memory The program is accessing memory or re;</pre>
<pre>WARNING 2019-03-20 18:00:01,593 angr.state_plugins.symbolic_memory 1) setting a value to the initial WARNING 2019-03-20 18:00:01,594 angr.state_plugins.symbolic_memory 2) adding the state option ZERO_FJ WARNING 2019-03-20 18:00:01,594 angr.state_plugins.symbolic_memory 3) adding the state option SYMBOL WARNING 2019-03-20 18:00:01,594 angr.state_plugins.symbolic_memory Filling register edi with 4 uncons WARNING 2019-03-20 18:00:01,598 angr.state_plugins.symbolic_memory Filling register edi with 4 uncons WARNING 2019-03-20 18:00:03,181 angr.state_plugins.symbolic_memory Filling memory at 0x7fff0000 with WARNING 2019-03-20 18:00:03,182 angr.state_plugins.symbolic_memory Filling memory at 0x7ffeff60 with [+] Success! Solution is: JXWVXRKX (angr) last@ubutu: ~/angr_ctf/dist \$./00_angr_find Enter the password: JXWVXRKX</pre>		angr.state_plugins.symbolic_memory angr will cope with this by generating
<pre>WARNING 2019-03-20 18:00:01,594 angr.state_plugins.symbolic_memory 3) adding the state option SYMBOL_ WARNING 2019-03-20 18:00:01,594 angr.state_plugins.symbolic_memory Filling register edi with 4 uncons WARNING 2019-03-20 18:00:01,598 angr.state_plugins.symbolic_memory Filling register edi with 4 uncons WARNING 2019-03-20 18:00:03,181 angr.state_plugins.symbolic_memory Filling memory at 0x7fff0000 with WARNING 2019-03-20 18:00:03,182 angr.state_plugins.symbolic_memory Filling memory at 0x7fff0000 with UARNING 2019-03-20 18:00:03,182 angr.state_plugins.symbolic_memory Filling memory at 0x7ff606 with [+] Success! Solution is: JXWVXRKX (angr) last@ubuntu: ~/angr.ctf/dist \$./00_angr_find Enter the password: JXWVXRKX</pre>		angr.state_plugins.symbolic_memory 1) setting a value to the initial sta
WARNING 2019-03-20 18:00:01,594 angr.state_plugins.symbolic_memory Filling register edi with 4 uncons WARNING 2019-03-20 18:00:01,598 angr.state_plugins.symbolic_memory Filling register ebx with 4 uncons WARNING 2019-03-20 18:00:03,181 angr.state_plugins.symbolic_memory Filling memory at 0x7ff60000 with WARNING 2019-03-20 18:00:03,182 angr.state_plugins.symbolic_memory Filling memory at 0x7ff6f60 with [+] Success! Solution is: JXWVXRKX (angr) last@ubuntu: ~/angr_ctf/dist \$./00_angr_find Enter the password: JXWVXRKX	WARNING 2019-03-20 18:00:01,594	angr.state_plugins.symbolic_memory 2) adding the state option ZERO_FILL_
WARNING 2019-03-20 18:00:01,598 angr.state_plugins.symbolic_memory Filling register ebx with 4 uncons WARNING 2019-03-20 18:00:03,181 angr.state_plugins.symbolic_memory Filling memory at 0x7ff60000 with WARNING 2019-03-20 18:00:03,182 angr.state_plugins.symbolic_memory Filling memory at 0x7ffeff60 with [+] Success! Solution is: JXWVXRKX (angr) last@ubunti: ~/angr_ctf/dist \$./00_angr_find Enter the password: JXWVXRKX		angr.state_plugins.symbolic_memory 3) adding the state option SYMBOL_FIL
WARNING 2019-03-20 18:00:03,181 angr.state_plugins.symbolic_memory Filling memory at 0x7fff0000 with WARNING 2019-03-20 18:00:03,182 angr.state_plugins.symbolic_memory Filling memory at 0x7ffeff60 with [+] Success! Solution is: JXWVXRKX (angr) last@ubuntu: ~/angr_ctf/dist \$./00_angr_find Enter the password: JXWVXRKX		angr.state_plugins.symbolic_memory Filling register edi with 4 unconstra
WARNING 2019-03-20 18:00:03,182 angr.state_plugins.symbolic_memory Filling memory at 0x7ffeff60 with [+] Success! Solution is: JXWVXRKX (angr) last@ubuntu: ~/angr_ctf/dist \$./00_angr_find Enter the password: JXWVXRKX		
[+] Success! Solution is: JXWVXRKX (angr) last@ubuntu: ~/angr_ctf/dist \$./00_angr_find Enter the password: JXWVXRKX		
(angr) last@ubuntu: ~/angr_ctf/dist \$./00_angr_find Enter the password: JXWVXRKX		angr.state_plugins.symbolic_memory Filling memory at 0x7ffeff60 with 4 u
Enter the password: JXWVXRKX		
		\$./00_angr_find
Good Job.		
(angr) last@ubuntu: ~/angr_ctf/dist \$	(angr) last@ubuntu: ~/angr_ctf/dist	\$

angr

Detect Attacks: Ongoing

Attack is taking place! How will we know? How will we handle it?

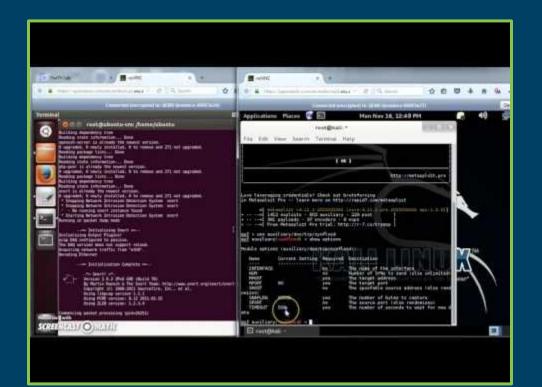
Intrusion detection

Intrusion Detection

Intrusion Detection System

- automated review and response
- responds in (nearly) real time
- components:
 - sensors
 - analysis engine
 - countermeasure deployment
 - audit log

Example: Network Monitoring


- suspicious behavior:
 - opening connections to many hosts
- automated response:
 - router reconfigures to isolate suspicious host on its own subnet with access only to (e.g.) virus scanner download.
 - notifies administrators
- issue:
 - errors...

Screenshot from "Suricata" (Network Intrusion Detection and Prevention tool)

Example: Intrusion Detection, Snort

Network-Based Intrusion Detection System

typically separate machine

• stealth mode:

- one NIC faces the network being monitored, no packets ever sent out on it, no packets can be routed specifically to it
- another NIC faces a separate network through which alarms are sent

• honeypot:

- dedicated machines(s) or networks
- purpose is to look attractive to attacker
- but actually just a trap: monitored to detect and surveil attacker

Errors

• false positive

raise an alarm for a non-attack

- makes administrators less confident in warnings
- perhaps leading to actual attacks being dismissed
- false negative
 - not raise an alarm for an attack
 - the attackers get in undetected!
- tradeoff between the two needs to be tunable; difficult to achieve the right classification statistics

(problem if both possible at the same time. cf. type soundness)

Identification Methodologies

[Denning 1987]

- signature based:
 - recognize known attacks
- specification based:
 - $\circ \quad \ \ \text{recognize bad behavior}$
- anomaly based:
 - recognize abnormal behavior

Signature Based Detection

a.k.a. {misuse, rule-based} detection

- characterize known attacks w/ signatures
- behavior matches signature ⇒
 declare an intrusion
- issues:
 - works only for known attacks
 - signature needs to be robust w.r.t.
 small changes in attack

Intrusion Detection - Signature-Based Detection Example: Tripwire

open source tool and commercial product

• policy:

- certain files shouldn't change
- state snapshot:
 - analyzes filesystem, stores database of file hashe

• automated response:

• runs (e.g. daily) and reports change of hash

• issues:

 where to store database, how to protect its integrity, how to protect tripwire itself?

• falko@zebra409: ~				_0×
Rule Name	Severity Level	Added	Removed	Modified
Invariant Directories	66	Θ	0	0
Tripwire Data Files	100	Θ	0	0
Other binaries	66	0	0	0
Tripwire Binaries	100	0	0	0
Other libraries	66	Ø	0	0
Root file-system executables	100	0	0	0
System boot changes	100	0 0 0	0	0
Root file-system libraries	100	0	0	0
(/lib)			-	
Critical system boot files	100	Θ	0	0
* Other configuration files	66	ø	Ō	3
(/etc)				
Boot Scripts	100	0	0	0
Security Control	66	õ	õ	0
* Root config files	100	0	0	2
Devices & Kernel information	100	0	0	0
	100	U	0	U
(/dev)				
Total objects scanned: 12253				
Total violations found: 5				
Totat Viotationa Tound: 5				

Intrusion Detection - Signature-Based Detection

Network Flight Recorder

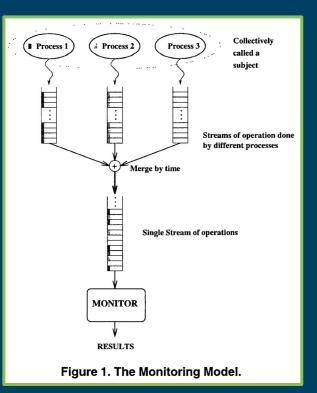
Example: Network Flight Recorder

• three components:

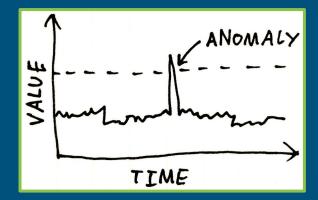
- packet sucker captures network traffic
- decision engine uses custom-written filters in DSL to extract information from packets
- \circ backend writes information to disk; packets are discarded
- queries performed over stored information while rest of system continues to process packets
- similar ideas used in Zeek (aka. Bro)
 [Paxson 1999], available still as open source IDS

Specification Based Detection

Rule ≡ deniedRule ⊔ permittedRule deniedRule ⊑ ¬permittedRule Rule ≡ ∃ hasSrc ⊓ ∀hasSrc.NetworkRole ⊓ ∃ hasDst ⊓ ∀hasDst.NetworkRole ⊓ ∃ hasService ⊓ ∀hasService.Service ⊓ ∃ hasOrder ⊓ ∃ hasDir ⊓ ∀hasDir.Direction Direction ≡ inDir ⊔ outDir inDir ⊑ ¬outDir


- characterize good behavior of program w/ a specification
- if behavior ever departs from specification, declare an intrusion
- issues:
 - effort to create specifications
 - any program is a potential vulnerability if executed by a privileged user

Intrusion Detection - Specification-Based Detection


Example: Distributed Monitor

[Ko et al. 1997]

- monitors Unix audit logs
- analyst writes grammar in DSL to describe good behavior
- parser checks conformance of logs with grammar
- distributed because it combines information from multiple hosts

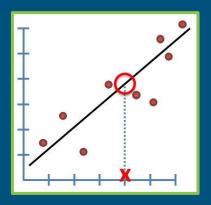
Anomaly Based Detection

- characterize normal behavior of system
- if behavior ever departs far enough from normal,
 - declare an intrusion
- issues:
 - feature identification
 - obtaining data on
 what is normal —>

Intrusion Detection - Anomaly-Based Detection

Example: Haystack (US Air Force)

[Smaha 1988] (influential; one of the earliest IDS papers)


- monitors value of some statistic of interest over a sliding time window: a_i, a_{i+1}, ..., a_i ← (buffer j-i msg)
- determine lower and upper bounds t_L and t_U such that 90% of values lie between t_L and t_U
- next value is outside t_1 and $t_1 \Rightarrow anomaly$; raise alarm

adaptive

• as time passes, window moves, so detector adjusts itself.

Statistical Models

ML great for classification...

- threshold models
 - min and max
- moment models
 - mean & standard deviation
- markov models
 - probability of next event based on current state

BUT, ML **not** great for *outlier detection*. Adversarial ML poorly understood.

Intrusion Response?

intrusion handling: [Northcutt 1998]

- 1. Preparation 4. Eradication
- 2. Identification 5. Recovery
- 3. Containment 6. Follow up

automated response: monitor, protect, alert

counterattack?

- legal route: file criminal complaint
- tech route: damage attacker
 - might harm innocents
 - might expose you legally

Detect Attacks: Past Damage is done. How will we know? How will we handle it?

AuditingAnti-malware

Auditing

Auditing

What to Log?

example: US State Dept. pilot program (1980s)

- requirements
 - log every transaction related to protected electronic documents
 - system administrator reviews log daily to search for malicious behavior
- experiment
 - test system for 5 users, 10 minutes
- result
 - audit log = stack of paper over 1ft high
 - real system would have been 1000s of users working 24/7
- lessons learned
 - logging and review of everything by a human is impractical
 - need: reduce information logged
 - need: automated review

States vs. Events

States

data; what system is

- backup
- more?

what state to log?

pros: survive power failures, crashes, attacks.
cons: what state? memory, disk, network, ...
what about distributed systems? (hard)

Events our focus

actions, how system came to be

- login
- access to protected resource,
- elevation and attenuation of privileges,
- ...

which events to log?

- event relevant for security
- what check was made, outcome, information that lead to that decision.

In-Class: Course Management System

what <u>kind of events</u> to log for a course management system (*mutations*)? what <u>details</u> would you put into the log entry?

Log Type	Action	-	Acting IP Address	Affected NetIDs	Simulated NetID	Assignment	Date
Course	Created New Assignment	mrc26	128.84.217.18			Homework	January 28, 2016 04:06PM

- Created new assignment 'A1'
- Added required submission 'a1' with accepted types: pdf
- Added problem 'a1' worth 4.0 points
- · Created new groups for each student

In-Class: Course Management System

Course

- add students,
- change group timeslot,
- computed assignment stats,
- computed total score,
- created / edited removed / restored assignment,
- created / removed / restored announcement,
- created / removed timeslot,
- dropped students,
- edited course properties,
- edited staff preferences,
- edited student preferences,
- sent course email
- uploaded class list

Content

- added / edited content data,
- create / edited / reorder / remove content,
- add students,
- change group timeslot,

Group

- sent / canceled group invite
- joined / left group
- created / disbanded group
- granted / removed extension
- requested regrade,

Grade

- assigned grader
- edited grades
- edited comments
- uploaded grade files

.

In-Class: Course Management System

details logged:

- event type
- acting NetID
- acting IP address
- affected NetIDs
- simulated NetID
- assignment, if any
- event details (no sanitization of grades)

173.245.55.154 [15/Dec/2015:19:37:51 +0000] "GET /apple-touch-icon-120x120-
108.162.216.155 [15/Dec/2015:19:37:51 +0000] "GET /apple-touch-icon-120x120
108.162.216.172 [15/Dec/2015:19:37:52 +0000] "GET /apple-touch-icon.png HTT
108.162.216.172 [15/Dec/2015:19:37:54 +0000] "GET /apple-touch-icon.png HTT
108.162.216.173 - [15/Dec/2015:19:37:56 +0000] "GET /wp-content/themes/hueman
198.41.235.29 [15/Dec/2015:19:38:21 +0000] "POST /wp-cron.php?doing_wp_cron
108.162.220.11 - [15/Dec/2015:19:38:21 +0000] "GET /how-to-use-aptitude-on-de
141.101.92.242 - [15/Dec/2015:19:38:31 +0000] "POST /wp-admin/admin-ajax.php
173.245.54.158 [15/Dec/2015:19:38:48 +0000] "GET /feed/ HTTP/1.1" 200 11638
141.101.66.149 [15/Dec/2015:19:39:09 +0000] "GET /feed/ HTTP/1.1" 200 11638
141.101.79.133 - [15/Dec/2015:19:39:16 +0000] "GET /install-taskwarrior-on-ub
141.101.79.103 - [15/Dec/2015:19:39:17 +0000] "GET /wp-includes/js/jquery/jqu
162.158.180.89 [15/Dec/2015:19:39:17 +0000] "GET /wp-includes/js/jquery/jqu
162.158.180.101 - [15/Dec/2015:19:39:17 +0000] "GET /wp-content/plugins/q2w3-
141.101.80.200 - [15/Dec/2015:19:39:17 +0000] "GET /wp-content/plugins/durace
162.158.180.65 - [15/Dec/2015:19:39:17 +0000] "GET /wp-content/plugins/durace
141.101.81.200 - [15/Dec/2015:19:39:17 +0000] "GET /wp-content/themes/hueman1
141.101.80.200 - [15/Dec/2015:19:39:17 +0000] "GET /wp-content/themes/hueman1

Auditing

How to Log

Say what you mean

log entry should say what it means.

- interpretation of log entry should depend only on content of log entry
- → reviewer can recover meaning w/o needing to assume / supply context
- good practice: write down straightforward English sentence describing the meaning of each log entry

Auditing - How to Log Standard Log File Format

keeping log files in standard format enables...

- reuse of tools for log analysis
- correlation across logs from multiple applications

standard formats:

- Common Log Format (NCSA; used by web servers)
- **syslog** (used by Unix)
 - \circ originated with sendmail
 - became de facto standard
 - then standardized by IETF: RFC 5424
 - examples: take a look in your local /var/log directory

Auditing - How to Log Log Size Too Large?

what happens if log size grows too large?

- stop logging
- overwrite previous entries
- halt system

all used in practise, depending on scenario.

(none of these options are great. but you have to do something)

Auditing

Manual

enable admins to explore logs and look for {states,events}.

issues:

- designers might not have recorded the right {states,events}
- visualization, query, expressivity (HCI/DB issues)
- correlation amongst multiple logs

Auditing - Manual Visualization

Interface

- text
 - example: syslog (previous slide)
- hypertext
- DBMS
 - example: queries in the course management system
- graph
 - nodes might be entities (processes, files), edges might be associations (forking, times)

Available Pages

High Level Pages

• date page

Auid (User) Pages

• jhoaglan

Process Info Pages

Parentless Processes (creating fork not in log)

115499

Parented Processes

- 500: /usr/bin/csh
- 501: /usr/ucb/quota
- 502: /usr/bin/tty
 505: /usr/bin/ln
- 505: /usr/bin/sh
 506: /usr/bin/sh
- 507: /usr/bin/id
- 508: /usr/bin/chmod

File Info Pages

- /etc/security/password.adjunct
- /usr/export/home/jhoaglan/.history

Generated on Wed Jul 20 12:05:28 PDT 1994 by hoagland using ab

Figure 3d. Output of the Hypertext Generator on the log of a suid attack: the index page.

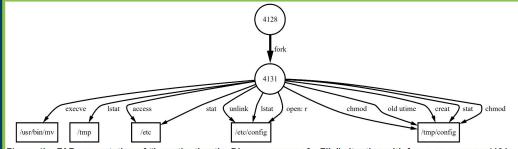


Figure 4b. FAB presentation of "Investigating the Disappearance of a File" situation with focus on process 4131. The process that removed the file, 4131, is now investigated further with other system calls and its parent process shown. It is seen that process is running the "mv" program, which is show to read and remove "/etc/config", Auditing - Manual Visualization

Interface

- text
 - example: syslog (previous slide)
- hypertext
- DBMS
 - example: queries in the course management system
- graph
 - nodes might be entities (processes, files), edges might be associations (forking, times)

Technique

- temporal
 - animate what happened and when (e.g. time-ordered sequence of graphs)
- slice
 - minimal set of log events that affected an object

Auditing

Automatic

detect

- suspicious behavior
- violations of explicit policy

built how

- custom-built systems
- classic AI techniques like training neural nets, expert systems, etc.
- machine learning

response: monitor, report, take action

example: LogRhythm

Malware removal

antivirus

Administration

What can Sys-Admins do, to secure systems, w/o writing them themselves?

- Hardening
- Firewalls
- Isolation

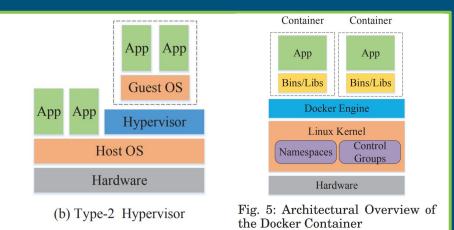
Categories	Trusted Computing Base	Performance Overhead of common cases*	Code Requirement
(Subcategories)			
Physical Host	Hardware	Negligible	No code modification required
Hardware compo- nent	Hardware, isolation technique framework	High	Application source code may be required
Supervisor			
Hypervisor	Hardware, isolation technique framework, or BIOS	Practical	Application source code or bi- nary code may or may not re- quire to be modified
Library OS	Hypervisor, OS, Library OS framework	High	Application code may require to be ported or recompiled
Container	OS, sandbox framework, Con- tainer Engine, Piece of Appli- cation Logic	Practical	No code modification required
Intra-application			
Code Rewriting	OS and Binary Writer	Practical	Modification to binary re- quired.
Compiler	Operating system, compiler and runtime	Low	Source code modification may or may not be required
System Loading	OS kernel, isolation technique framework	High	Application code modification may or may not be required.

Isolation

isolation done where: outside the <u>computer</u>

Physical

air-gap: system physically isolated from network.


how to breach (w/ enough **resources**)? Hollywood-level creative.

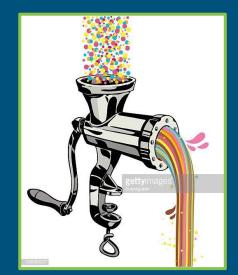
Isolation

isolation done where: outside the <u>program</u>

Supervisor

hypervisor (VMM): hosts a computer, in software, on which SW runs. Type-1 (Hyper-V, Xen) Type-2 (VirtualBox, VMware)

library OS: OS as user-mode library. "Multiple OS" on a shared system. Graphene


containerization: restricted execution
environment.
 chroot, docker, lxc

Isolation

for completeness; sys-admins don't really ever do this

isolation done where: <u>inside</u> the <u>program</u>

Intra-Application

code-rewriting: rewrite code to introduce isolation into it. monitors, binary instrumentation

compiler: program analysis rejects program that do not have isolation. Java memory safety, CompCert IFC languages

system-loading: force system to use
customized libs that do access control
 boxify

Summary

Summary

Arms Race

now you know some of what **Security Analysts**, **Forensic Analysts**, and **System Administrators** do.

- detect vulnerabilities tools: scan, look up CVE
- audit for attacks how/who/when/where
 - \circ manual: visualization
 - automatic: report/act
- security w/o building security in

important: limits; e.g. pattern-based approaches can be circumvented

adblock, fuckadblock fuckfuckadblock,