
Hardening

Applied Information Security
Lecture 4

Recap: Foreknowledge

Attackers:

● Mindset, Phases

What can be accomplished by an attack:

● Code Injection
Dynamic Evaluation, Insecure Deserialization, XSS, Command Inject, SQL Injection, Buffer Overflow, ...

● Side Channels
Hardware, Network, Physical World (airgap), ...

● Social Engineering
(spear)phishing, weapons of influence, dumpster diving, ...

Today’s Topics

● detect vulnerabilities
○ known

■ vulnerability scan & exploit
○ unknown

■ automatic, manual

● detect attacks
○ ongoing

■ intrusion detection
○ past

■ auditing, malware removal

● administration
○ hardening, firewall, isolation

Detect
Vulnerabilities:
 Known

Known vulnerabilities;
How to find them?
How to exploit them?

gvm
Greenbone

Vulnerability Manager

MITRE CVE, + UI & auto-scan

● scan a specified host
for vulnerabilities

recently changed
names; some still

refer to this as
OpenVAS

msfconsole
Metasploit Framework

Console

collection of exploits

● standard format
(use, options, run)

● Parameterized
(IP address, ...)

for security auditing

Detect
Vulnerabilities:
 Unknown

No known vulnerabilities;
How do we craft
new ones?

● automatic
● manual

Automatic

afl, sqlmap

afl
American Fuzzy Lop

fuzzer

● randomly tweak a given input
● provoke bad behavior

used e.g. to find buffer overflows.

sqlmap test for SQL injections!

Manual

angr, Ghidra (reverse engineer), Burpsuite, ...

angr

binary analysis: concolic execution

● symbolic execution
(abstract execution traces)

● + testing
(to enter each abstract trace)

used e.g. to find buffer overflows.

Detect
Attacks:
 Ongoing

Attack is taking place!
How will we know?
How will we handle it?

● Intrusion detection

Intrusion Detection

Intrusion
Detection
System

Intrusion Detection

● automated review and response
● responds in (nearly) real time
● components:

○ sensors
○ analysis engine
○ countermeasure deployment
○ audit log

Example: Network Monitoring

● suspicious behavior:
○ opening connections to many hosts

● automated response:
○ router reconfigures to isolate

suspicious host on its own
subnet with access only to (e.g.)
virus scanner download.

○ notifies administrators

● issue:
○ errors...

Intrusion Detection - Intrusion Detection System

Screenshot from “Suricata” (Network Intrusion Detection and Prevention tool)

Example: Intrusion Detection, Snort
Intrusion Detection - Intrusion Detection System

http://www.youtube.com/watch?v=ggaIKEp6t7g&t=240
http://www.youtube.com/watch?v=ggaIKEp6t7g&t=240

typically separate machine

● stealth mode:
○ one NIC faces the network being monitored,

no packets ever sent out on it,
no packets can be routed specifically to it

○ another NIC faces a separate network
through which alarms are sent

● honeypot:
○ dedicated machines(s) or networks
○ purpose is to look attractive to attacker
○ but actually just a trap: monitored to detect and

surveil attacker

Network-Based Intrusion Detection System
Intrusion Detection - Intrusion Detection System

Errors

● false positive
raise an alarm for a non-attack
○ makes administrators less confident in warnings
○ perhaps leading to actual attacks being dismissed

● false negative
not raise an alarm for an attack
○ the attackers get in undetected!

● tradeoff between the two needs to be tunable;
difficult to achieve the right classification statistics

(problem if both possible at the same time. cf. type soundness)

Intrusion Detection - Intrusion Detection System

Identification Methodologies

[Denning 1987]

● signature based:
○ recognize known attacks

● specification based:
○ recognize bad behavior

● anomaly based:
○ recognize abnormal behavior

Intrusion Detection - Intrusion Detection System

Signature
Based Detection

Intrusion Detection

a.k.a. {misuse, rule-based} detection

● characterize known attacks
w/ signatures

● behavior matches signature ⇒
declare an intrusion

● issues:
○ works only for known attacks
○ signature needs to be robust w.r.t.

small changes in attack

Example: Tripwire

open source tool and commercial product

● policy:
○ certain files shouldn't change

● state snapshot:
○ analyzes filesystem, stores database of file hashes

● automated response:
○ runs (e.g. daily) and reports change of hash

● issues:
○ where to store database, how to protect

its integrity, how to protect tripwire itself?

Intrusion Detection - Signature-Based Detection

Example: Network Flight Recorder

● three components:
○ packet sucker captures network traffic
○ decision engine uses custom-written filters in DSL to extract information from packets
○ backend writes information to disk; packets are discarded

● queries performed over stored information
while rest of system continues to process packets

● similar ideas used in Zeek (aka. Bro)
[Paxson 1999], available still as open source IDS

Intrusion Detection - Signature-Based Detection

Specification
Based Detection

Intrusion Detection

● characterize good behavior of
program w/ a specification

● if behavior ever departs from
specification, declare an intrusion

● issues:
○ effort to create specifications
○ any program is a potential vulnerability

if executed by a privileged user

[Ko et al. 1997]

● monitors Unix audit logs
● analyst writes grammar in DSL to describe

good behavior
● parser checks conformance of logs

with grammar
● distributed because it combines information

from multiple hosts

Example: Distributed Monitor
Intrusion Detection - Specification-Based Detection

Anomaly
Based Detection

Intrusion Detection

● characterize normal behavior
of system

● if behavior ever departs far enough
from normal,
declare an intrusion

● issues:
○ feature identification
○ obtaining data on

what is normal

[Smaha 1988] (influential; one of the earliest IDS papers)

● monitors value of some statistic of interest over a
sliding time window: ai , ai+1, ..., aj ← (buffer j-i msg)

● determine lower and upper bounds tL and tU such that
90% of values lie between tL and tU

● next value is outside tL and tU ⇒ anomaly; raise alarm

adaptive

● as time passes, window moves, so detector adjusts itself.

Example: Haystack (US Air Force)
Intrusion Detection - Anomaly-Based Detection

Statistical
Models

Intrusion Detection

ML great for classification...

● threshold models
○ min and max

● moment models
○ mean & standard deviation

● markov models
○ probability of next event

based on current state

BUT, ML not great for outlier detection.
Adversarial ML poorly understood.

Intrusion
Response?

Intrusion Detection

intrusion handling: [Northcutt 1998]

1. Preparation 4. Eradication
2. Identification 5. Recovery
3. Containment 6. Follow up

automated response: monitor, protect, alert

counterattack?

● legal route: file criminal complaint
● tech route: damage attacker

○ might harm innocents
○ might expose you legally

Detect
Attacks:
 Past

Damage is done.
How will we know?
How will we handle it?

● Auditing
● Anti-malware

Auditing

What to Log?

Auditing
example: US State Dept. pilot program (1980s)

● requirements
○ log every transaction related to

protected electronic documents
○ system administrator reviews log daily

to search for malicious behavior
● experiment

○ test system for 5 users, 10 minutes
● result

○ audit log = stack of paper over 1ft high
○ real system would have been 1000s of

users working 24/7
● lessons learned

○ logging and review of everything by a
human is impractical

○ need: reduce information logged
○ need: automated review

States vs. Events

States
data; what system is

● backup
● more?

what state to log?

pros: survive power failures, crashes, attacks.
cons: what state? memory, disk, network, …

 what about distributed systems? (hard)

Events
actions, how system came to be

● login
● access to protected resource,
● elevation and attenuation of privileges,
● ...

which events to log?

● event relevant for security
● what check was made, outcome,

information that lead to that decision.

Auditing - What to Log

our focus

In-Class: Course Management System

what kind of events to log for a course management system (mutations)?
what details would you put into the log entry?

Auditing - What to Log

In-Class: Course Management System

Course
● add students,
● change group timeslot,
● computed assignment stats,
● computed total score,
● created / edited removed / restored assignment,
● created / removed / restored announcement,
● created / removed timeslot,
● dropped students,
● edited course properties,
● edited staff preferences,
● edited student preferences,
● sent course email
● uploaded class list

Content
● added / edited content data,
● create / edited / reorder / remove content,
● add students,
● change group timeslot,

Group
● sent / canceled group invite
● joined / left group
● created / disbanded group
● granted / removed extension
● requested regrade,

submitted files

Auditing - What to Log

Grade
● assigned grader
● edited grades
● edited comments
● uploaded grade

files

In-Class: Course Management System

details logged:

● event type
● acting NetID
● acting IP address
● affected NetIDs
● simulated NetID
● assignment, if any
● event details (no sanitization of grades)

Auditing - What to Log

How to Log
Say what you mean

Auditing

log entry should say what it means.

● interpretation of log entry should depend
only on content of log entry

● ⇒ reviewer can recover meaning w/o
 needing to assume / supply context

● good practice: write down straightforward
English sentence describing
the meaning of each log entry

Standard Log File Format

keeping log files in standard format enables...

● reuse of tools for log analysis
● correlation across logs from multiple applications

standard formats:

● Common Log Format (NCSA; used by web servers)
● syslog (used by Unix)

○ originated with sendmail
○ became de facto standard
○ then standardized by IETF: RFC 5424
○ examples: take a look in your local /var/log directory

Auditing - How to Log

Log Size Too Large?

what happens if log size grows too large?

● stop logging
● overwrite previous entries
● halt system

all used in practise, depending on scenario.

(none of these options are great. but you have to do something)

Auditing - How to Log

Manual

Auditing

enable admins to explore logs and
look for {states,events}.

issues:

● designers might not have recorded
the right {states,events}

● visualization, query, expressivity
(HCI/DB issues)

● correlation amongst multiple logs

Visualization

Interface
● text

○ example: syslog (previous slide)
● hypertext
● DBMS

○ example: queries in the course
management system

● graph
○ nodes might be entities

(processes, files),
edges might be associations
(forking, times)

Auditing - Manual

Visualization

Interface
● text

○ example: syslog (previous slide)
● hypertext
● DBMS

○ example: queries in the course
management system

● graph
○ nodes might be entities

(processes, files),
edges might be associations
(forking, times)

Technique
● temporal

○ animate what happened and when
(e.g. time-ordered sequence of graphs)

● slice
○ minimal set of log events

that affected an object

Auditing - Manual

Automatic

Auditing

detect

● suspicious behavior
● violations of explicit policy

built how

● custom-built systems
● classic AI techniques like training

neural nets, expert systems, etc.
● machine learning

response: monitor, report, take action

e.g. close account /
connection

example: LogRhythm

Malware removal

antivirus

Administration

What can Sys-Admins
do, to secure systems,
w/o writing them
themselves?

● Hardening
● Firewalls
● Isolation

Ca
te

go
ri

es
Is

ol
at

io
n

Physical air-gap: system physically isolated
from network.

how to breach (w/ enough resources)?
Hollywood-level creative.

Isolation

isolation done where:
outside the computer

Supervisor

hypervisor (VMM): hosts a computer,
in software, on which SW runs.

Type-1 (Hyper-V, Xen)
Type-2 (VirtualBox, VMware)

library OS: OS as user-mode library.
“Multiple OS” on a shared system.

Graphene

containerization: restricted execution
environment.

chroot, docker, lxc

Isolation

isolation done where:
outside the program

Intra-Application

code-rewriting: rewrite code to
introduce isolation into it.

monitors, binary instrumentation

compiler: program analysis rejects
program that do not have isolation.

Java memory safety, CompCert
IFC languages

system-loading: force system to use
customized libs that do access control

boxify

Isolation

isolation done where:
inside the program

for completeness;
sys-admins don’t
really ever do this

Summary

Arms Race

now you know some of what Security Analysts,
Forensic Analysts, and System Administrators do.

● detect vulnerabilities
tools: scan, look up CVE

● audit for attacks
how/who/when/where
○ manual: visualization
○ automatic: report/act

● security w/o building security in

important: limits; e.g. pattern-based approaches can be circumvented

Summary

adblock,
fuckadblock

fuckfuckadblock,
...

