
Protocol Design Notes

Applied Information Security — IT University of Copenhagen

October 4, 2020

A protocol defines a sequence of steps between several actors in a system.
Actors are the principals in the system, e.g., users, servers, desktops, laptops,
card readers, tokens, etc. In order for these actors to interact they can: send mes-
sages or run local programs. This document describes the syntax and provides
guidelines for designing protocols. The document concludes with a full-fledge
example and some remarks.

1 Protocol Design Syntax

Every step in the protocol must be explicitly enumerated.

1. step_1
2. step_2
3. step_3

...

The enumeration denotes the execution order (in this case, step 1, step 2,
step 3). Each step must be defined in either of these two forms:

• Sender -> Receiver: message
This represents a step where an actor Sender sends a message to an ac-
tor Receiver. The content of the message is the value in the variable
message.

• Actor: program
This represents a step where Actor runs the local program program.
Programs are specified using pseudo-code, for example,

– if-then-else statements.

– Sender -> Receiver: message (see above).

– Variable assignments x := v; we can add conditions on v, for in-
stance, with v = 3 or with v > 42.

– An English statement indicating some effect, e.g., the user is authen-
ticated, or show a red light.

1

– Simply a value, e.g., a string (”Enter password”).

This is not an exhaustive list. Other statements may be used as long as
no ambiguity arises in their meaning.

If the program consists of more than one statement, you can separate
them with line breaks and indent them at the same level. In this case,
you do not need to enumerate the steps in the program. For example,

1. A: x := 1
y := 2
A -> B: x+y

2 Definitions and Enrollment

Definitions It is recommended to begin the definition of a protocol by explic-
itly describing:

• The actors in the system.

• Variables and values (information) that each device stores.

• The functions (computation) that each device can perform.

• Assumptions on communication channels.

• . . .

This helps clarifying, for instance, whether certain value was stored at enroll-
ment in the device, or it needs to be sent by another actor.

Enrollment It is also recommended to describe the enrollment process. This
information may help clarify why certain information is only accessible to cer-
tain actors, and increase our confidence on the validity of the information.

3 ITU Room Access Authentication Protocol — Gym

Here we show an example to illustrate how to apply the guidelines in the pre-
vious sections. We model the authentication protocol of the room access au-
thentication system installed at ITU. Disclaimer: this is not based on the real
implementation of the authentication system. Figure ?? shows the complete
definition of the protocol.

2

ITU Room Access Authentication Protocol

Definitions and Enrollment

1. Consider a user (U), a card reader (R) and an authentication system
(S).

2. At enrollment, U is given a plastic card containing her user id
(uid). Also, U chooses a pin that is stored in S.

3. S uses the function db pins(uid) to retreive the pin of the
user with user id uid.

4. If U decides to pay for the gym, then the tuple <uid,GYM> is added
to the room access dataset (RoomAccess).

5. Card readers include a hard-coded variable (room) indicating the
room they are installed in.

Authentication Protocol

1. U -> R: uid // by showing the card nearby the card reader
2. R -> S: <uid, room>
3. S: if <uid,room> ∈ RoomAccess and room = GYM

then S -> R: res with res = pin required
else S -> R: res with res = not registered

4. R: if res = pin required
then R -> U: Show blinking orange light // meaning ”enter pin”
else R -> U: Show red light

5. U -> R: upin
6. R -> S: upin
7. S: if upin = db pins(uid)

then S -> R: Show green light and open door
else S -> R: Show red light

Figure 1: ITU Room Access Authentication Protocol

Remarks

As you might have noticed, we have made some somehow arbitrary choices in
defining this protocol. This was done on purpose, to illustrate that the flexibil-
ity of the protocol language.

• We have modeled explicitly the database RoomAccess whereas we have
implicitly model a pins database. In doing so, we can use standard set

3

theoretic operations (set inclusion ∈, union ∪, intersection ∩, . . .) to han-
dle access to the RoomAccess database. On the contrary, for the pin
database, we simply define one function (db pin(uid)), which is the
only interface to the database. This choice requires explicitly describing
this function before defining the protocol. Both options are equally valid.

• The intermediate values (pin required and not registered) and vari-
ables (res and upin) are not mentioned in the definition and enrollment
section. This is because these values and variables are generated on-the-
fly as the protocol is executed, therefore it is clear who provides them,
where they are stored, and who has access to them.

• We have not mentioned the color code interface from the card reader in
the definitions section. This is because is not very relevant for the correct-
ness protocol, it is just an effect of certain operations. That said, it is not
incorrect to have defined this interface.

• We have added extra explanations as comments on the protocol. These
are unnecessary, but lacking a formal description might clarify the inter-
action between the user and the card reader. Alternatively, one might
write a small description of the protocol before defining it.

We emphasize that you should make choices that prime clarity and aim to
decrease ambiguities and enhance readability.

4

