
OAuth is DAC. What do you do for
MAC?

Johan Peeters
Independent

Abstract
Such is the frustration of the development community with SAML, that most new projects
turn to OAuth. Yet the goals of the OAuth are completely different to SAML’s: the former
gives the end user control over who has access to their resources, while the latter is mainly
used to enforce compliance to security policy. Most projects need both, so vendors are
building ad-hoc extensions to their OAuth authorization servers to meet the need for
mandatory access control and developers are piecing together elements from the OAuth and
OIDC specs, proprietary extensions and custom code.
This paper is a call for guidance on how to integrate discretionary access control as provided
by OAuth and mandatory access control as demanded by business. It explores some
common practices which could be adopted as standards and, conversely, how current
standards could be leveraged.

Position
There is a need for a widely supported access control protocol for Mandatory Access Control
(MAC) that integrates well with OAuth.

DAC versus MAC
Access control models are often partitioned into Mandatory Access Control (MAC) and
Discretionary Access Control (DAC). The distinguishing characteristic of the former is the
enforcement of centrally administered security policies. In other words, whether an entity can
or cannot perform an action on a resource is governed by rules imposed by central authority.
In DAC models, on the other hand, this decision is taken by the resource owner.
MAC is usually associated with high-assurance deployments such as the military and
intelligence communities. However, MAC also fits the aspirations of most corporations and is
widely used in the guise of Role-Based Access Control (RBAC). In RBAC, subjects are
assigned roles which, are in turn assigned permissions to perform actions on resources.
Usually, an administrator makes these assignments at the behest of a central authority. Thus
common corporate practice protects the crown jewels with MAC, while DAC may be used by
employees protecting work in progress.
Social media and cloud services have blurred the right to control data. As users entrust their
data to corporations such as Facebook, Google, Microsoft and LinkedIn, they want DAC for
their data. OAuth fills that gap. But even in this brave new world of user-controlled data the
need for MAC remains. Consider the example of customers of an e-commerce site who can

selectively expose account details to social media such as purchases or wishlist. While DAC,
and hence OAuth, is well-suited for this use case, a helpdesk probably also needs access to
customers’ accounts. Which helpdesk worker can do what to which account is a matter for
MAC. Donald Trump’s temporary ban from Twitter is an interesting illustration of how
defective access control for helpdesk workers can have far-reaching consequences.

OpenID Connect
OpenID Connect (OIDC) has superseded OAuth as most, if not all, recent authorization
servers support OIDC. Since OIDC is built on top of OAuth 2.0, support for OIDC includes
support for OAuth. Conversely, choosing OAuth for access control, also includes OIDC,
regardless of whether identity services are required. So, even though OIDC is not an authZ
protocol, it is effectively being used as such in many cases. This practice is reflected and
reinforced by referring to an OIDC Security Token Service as an ‘authorization server’.
Ironically, the ‘OAuth is not for authN’ meme has resulted in overwhelming use of OIDC for
authZ.

Scope
The intention of the scope parameter is to communicate the scope of the access requested
by the client to the authorization server. This allows the authorization server to enter into a
dialog with end users to verify that they are indeed prepared to grant requested permissions.
OIDC standardizes the following scope tokens: openid , profile , email , address and
phone . It is common for an OIDC client to specify the openid scope alongside access
token scopes, effectively requesting both an ID and access token. There is no
standardization for access token scopes, which leads to projects developing proprietary
scope syntax and semantics. For example, it is frequently suggested to use scope tokens of
the <action>:<resource> form, but how this affects issued tokens or how this leads to
an access control decision remains unclear.
The authorization server may ignore the scope string - RFC 6749 explicitly mentions that this
may happen ‘based on the authorization server policy or the resource owner's instructions’.
While the latter is aligned with the goal of user-administered access control, the former
appears to be making allowances for a MAC model. It is of course entirely logical that the
authorization server should not only answer the question ‘does the user agree that the
requesting client is giving these access permissions?’, but also ‘is the access requested by
the user in line with security policy?’

JWT
In contrast to OAuth, OIDC standardizes the security token format. OIDC’s ID token is a
JWT, and, in the absence of a prescribed format for the OAuth access token, JWT has
become the de-facto standard for the access token.

It would be helpful if standards would specify JWT as a possible, or preferred, format for
access tokens. Like OIDC, OAuth standards could then distinguish between mandatory,
optional and custom claims.
Standards which specify optional claims with well-defined semantics can be very helpful in
establishing a blueprint, or checklist, of common concerns in the authN/Z space. The azp
claim, discussed in the next section, is an example of a claim that serves as a welcome
reminder of an easily overlooked aspect.

Audience and authorized party
OIDC stipulates that the aud claim must be present in an ID token. Moreover, a client or
relying party must validate that its client ID is amongst the aud values. Such requirement
makes perfect sense from an authZ perspective but is absurd if the intended use is authN:
permissions may vary according to the target resource server, user identity does not.
This is not a complaint about the mandatory presence and validation of aud in an OIDC
token, but more of an observation that the ‘authN, not authZ’ narrative does not quite fit the
spec. On the contrary, aud is frequently embraced to support communication of a security
policy. For example, in a project that makes pre-configured computing infrastructure
available to small businesses, the aud identifies the intended target infrastructure - the
authorization server only issues tokens for resources that the user had access to.
Similarly, the optional azp claim has been standardized by OIDC. This claim ‘is only
needed when the ID Token … is different than the authorized party. ’
In other words, a token is expected to contain this claim when a client forwards it to a
resource server. Again, this claim seems to make more sense in an authZ than an authN
scenario.

RBAC
The MAC gap in the OIDC authorization server spec has been filled by vendors in an ad-hoc
fashion. Unsurprisingly, given the industry's familiarity with RBAC, roles feature heavily.
Building on this momentum, a straightforward way of supporting MAC with OAuth access
tokens is to specify a standard ‘roles’ claim. It could be argued that, given the limitations of
RBAC, a more powerful access control model is desirable. Many have argued for ABAC.
However, support for RBAC and ABAC are not mutually exclusive and both could be
pursued in parallel.

Conclusion
OAuth may broadly have achieved its aims to provide users with access control over their
resources, but there are some loose ends that need tidying. Adoption of JWT as the format
for access tokens is a no-brainer given current practice. This would also enable inclusion of
claims supporting MAC. Strong candidates would be some of the claims of the OIDC ID
token such as aud and azp .

IAM projects seem to be reinventing the wheel over and over again. Better guidance,
whether in the form of standards documents or otherwise, could call a stop to this waste.
Areas where such guidance might be particularly fruitful include the syntax of access token
scopes, how requested scopes impact of an access token and its effect on the authorization
decision.
RBAC is by no means universally acclaimed. However, given its dominance in industry and
wide support among authorization servers, standardization of JWT claims to support RBAC
would be a boon for interoperability. If claims supporting more expressive, or simpler, access
control models, such as ABAC, can be standardized as well, so much the better. However,
given the need for a shared vision on the nature and representation of common attributes,
this is likely to be a much more involved exercise.

References

OpenID Connect Core 1.0, https://openid.net/specs/openid-connect-core-1_0.html

JSON Web Token (JWT), https://tools.ietf.org/html/rfc7519

The OAuth 2.0 Authorization Framework, https://tools.ietf.org/html/rfc6749

https://openid.net/specs/openid-connect-core-1_0.html
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc6749

